Gordon DJ et al. (JUN 2015)
Oncogene 35 August 1--11
Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells.
Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However,despite the well-established role of EWS-FLI1 in tumor initiation,the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here,we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies,or collections of differentiating stem cells,generates cells with properties of Ewing sarcoma tumors,including characteristics of transformation. These cell lines exhibit anchorage-independent growth,a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore,these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth,which is a hallmark of Ewing sarcoma tumors.Oncogene advance online publication,12 October 2015; doi:10.1038/onc.2015.368.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
05893
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
ACCUTASE™
Janson C et al. (OCT 2015)
Cytogenetic and Genome Research 146 4 251--260
Replication Stress and Telomere Dysfunction Are Present in Cultured Human Embryonic Stem Cells
Replication stress causes DNA damage at fragile sites in the genome. DNA damage at telomeres can initiate breakage-fusion-bridge cycles and chromosome instability,which can result in replicative senescence or tumor formation. Little is known about the extent of replication stress or telomere dysfunction in human embryonic stem cells (hESCs). hESCs are grown in culture with the expectation of being used therapeutically in humans,making it important to minimize the levels of replication stress and telomere dysfunction. Here,the hESC line UCSF4 was cultured in a defined medium with growth factor Activin A,exogenous nucleosides,or DNA polymerase inhibitor aphidicolin. We used quantitative fluorescence in situ hybridization to analyze individual telomeres for dysfunction and observed that it can be increased by aphidicolin or Activin A. In contrast,adding exogenous nucleosides relieved dysfunction,suggesting that telomere dysfunction results from replication stress. Whether these findings can be applied to other hESC lines remains to be determined. However,because the loss of telomeres can lead to chromosome instability and cancer,we conclude that hESCs grown in culture for future therapeutic purposes should be routinely checked for replication stress and telomere dysfunction.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Higuchi A et al. (DEC 2015)
Scientific Reports 5 18136
Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
The tentative clinical application of human pluripotent stem cells (hPSCs),such as human embryonic stem cells and human induced pluripotent stem cells,is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore,we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture,whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
McCabe KL et al. (DEC 2015)
PloS one 10 12 e0145266
Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.
AIM To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. MATERIALS AND METHODS Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology,expression of corneal endothelial markers,and microarray analysis of gene expression. RESULTS hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells,expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPase$\$1 (ATPA1) on the apical surface in monolayer culture,and produced the key proteins of Descemet's membrane,Collagen VIII$\$1 and VIII$\$2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. CONCLUSION hESC-CECs are morphologically similar,express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Valsecchi R et al. (APR 2016)
Blood 127 16 1987--97
HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment.
Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL),HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and,in turn,is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis,we found that in CLL cells,HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma,reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models,and prolongs survival in mice. Of interest,we found that in CLL cells,HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore,HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes,including CXCR4,thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis.
View Publication
R. Schmidt et al. (feb 2022)
Science (New York,N.Y.) 375 6580 eabj4008
CRISPR activation and interference screens decode stimulation responses in primary human T cells.
Regulation of cytokine production in stimulated T cells can be disrupted in autoimmunity,immunodeficiencies,and cancer. Systematic discovery of stimulation-dependent cytokine regulators requires both loss-of-function and gain-of-function studies,which have been challenging in primary human cells. We now report genome-wide CRISPR activation (CRISPRa) and interference (CRISPRi) screens in primary human T cells to identify gene networks controlling interleukin-2 (IL-2) and interferon-$\gamma$ (IFN-$\gamma$) production. Arrayed CRISPRa confirmed key hits and enabled multiplexed secretome characterization,revealing reshaped cytokine responses. Coupling CRISPRa screening with single-cell RNA sequencing enabled deep molecular characterization of screen hits,revealing how perturbations tuned T cell activation and promoted cell states characterized by distinct cytokine expression profiles. These screens reveal genes that reprogram critical immune cell functions,which could inform the design of immunotherapies.
View Publication
产品类型:
产品号#:
20144
产品名:
EasySep™缓冲液
(Feb 2024)
Genome Biology 25 12
HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However,generation of human AID cell lines is challenging,especially in human embryonic stem cells (hESCs). Here,we develop HiHo-AID2,a streamlined procedure for rapid,one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines,including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13059-024-03187-w.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Apr 2025)
iScience 28 5
Enhanced differentiation of neural progenitor cells in Alzheimer’s disease into vulnerable immature neurons
SummaryFocusing on the early stages of Alzheimer’s disease (AD) holds great promise. However,the specific events in neural cells preceding AD onset remain elusive. To address this,we utilized human-induced pluripotent stem cells carrying APPswe mutation to explore the initial changes associated with AD progression. We observed enhanced neural activity and early neuronal differentiation in APPswe cerebral organoids cultured for one month. This phenomenon was also evident when neural progenitor cells (NPCs) were differentiated into neurons. Furthermore,transcriptomic analyses of NPCs and neurons confirmed altered expression of neurogenesis-related genes in APPswe NPCs. We also found that the upregulation of reactive oxygen species (ROS) is crucial for early neuronal differentiation in these cells. In addition,APPswe neurons remained immature after initial differentiation with increased susceptibility to toxicity,providing valuable insights into the premature exit from the neural progenitor state and the increased vulnerability of neural cells in AD. Graphical abstract Highlights•APPswe organoids show increased neural activity and early differentiation•Enhanced ROS levels are necessary but insufficient to accelerate differentiation•Transcriptome analysis of APPswe NPCs shows gene expression shift to differentiation•Premature neural cells with APPswe exhibit increased vulnerability to toxicity Molecular biology; Neuroscience; Cell biology
View Publication
The role of the bone marrow (BM) microenvironment in regulating the antitumor immune response in Waldenstrom macroglobulinemia (WM) remains poorly understood. Here we transcriptionally and phenotypically profiled non-malignant (CD19- CD138-) BM cells from WM patients with a focus on myeloid derived suppressive cells (MDSCs) to provide a deeper understanding of their role in WM. We found that HLA-DRlowCD11b+CD33+ MDSCs were significantly increased in WM patients as compared to normal controls,with an expansion of predominantly polymorphonuclear (PMN)-MDSCs. Single-cell immunogenomic profiling of WM MDSCs identified an immune-suppressive gene signature with upregulated inflammatory pathways associated with interferon and tumor necrosis factor (TNF) signaling. Gene signatures associated with an inflammatory and immune suppressive environment were predominately expressed in PMN-MDSCs. In vitro,WM PMN-MDSCs demonstrated robust T-cell suppression and their viability and expansion was notably enhanced by granulocyte colony stimulating factor (G-CSF) and TNFα. Furthermore,BM malignant B-cells attracted PMN-MDSCs to a greater degree than monocytic MDSCs. Collectively,these data suggest that malignant WM B cells actively recruit PMN-MDSCs which promote an immunosuppressive BM microenvironment through a direct T cell inhibition,while release of G-CSF/TNFα in the microenvironment further promotes PMN-MDSC expansion and in turn immune suppression. Targeting PMN-MDSCs may therefore represent a potential therapeutic strategy in patients with WM.
View Publication
产品类型:
产品号#:
17882
17882RF
产品名:
EasySep™ HLA嵌合全血CD66b正选试剂盒
RoboSep™ HLA嵌合全血CD66b正选试剂盒
S. Pisani et al. (mar 2020)
International journal of molecular sciences 21 5
Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering.
Aim of work was to locate a simple,reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited,namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size,pore orientation,porosity,and pore distribution were produced using two different techniques,such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity,seeding efficiency,and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method,as these conditions successfully improved the cellularization of polymeric patches. Furthermore,the investigation provided interesting information on patches' stability in physiological simulating experimental conditions. Considering the in vitro results,it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover,the protocol turned out to be simple,repeatable,and reproducible.
View Publication