S. Arandjelovic et al. (feb 2019)
Nature immunology 20 2 141--151
A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis.
Rheumatoid arthritis is characterized by progressive joint inflammation and affects {\~{}}1{\%} of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1,DOCK2,and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment,we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly,Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints,without general inhibition of inflammatory responses. Further,neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity,whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
(May 2024)
Biophotonics discovery 1 1
Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation
Significance: Heart disease is the leading cause of death in the United States,yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling. Aim: Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible,tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous,functional CMs. Approach: We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations,combinations,and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts. Results: Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore,ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage. Conclusions: We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Jun 2024)
Nature Communications 15
Siglec-6 as a therapeutic target for cell migration and adhesion in chronic lymphocytic leukemia
Siglec-6 is a lectin receptor with restricted expression in the placenta,mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL),its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8,a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand,sTn,results in Cdc42 activation,WASP protein recruitment and F-actin polymerization,which are all associated with cell migration. Therapeutically,a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL,which can be therapeutically targeted using a Siglec-6 specific T-biAb. Siglec-6 is often overexpressed in chronic lymphocytic leukaemia (CLL),but its role is unclear. Here,the author report that Siglec-6 regulates the migration and adhesion of CLL B cells via interaction with sialyl Tn on bone marrow stromal cells driving invasion which could be therapeutically targeted using a Siglec-6/CD3-bispecfiic antibody.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
(Oct 2024)
Journal of Translational Medicine 22 10299
FANCA promotes lung adenocarcinoma progression and is a potential target for epitope vaccine immunotherapy
BackgroundFANCA mutations have been detected in a variety of cancers and found to be pro-carcinogenic. However,no functional studies have been identified regarding the involvement of FANCA in the occurrence and the immune response of LUAD.MethodsThe mRNA expression and overall survival rates of FANCA were evaluated by the TIMER,PrognoScan and TCGA database in LUAD tissues,and FANCA expression was further validated by clinical serum samples using ELISA. The correlation between FANCA and immune infiltration level was investigated via TISIDB database and CIBERSORT algorithm. The Kaplan–Meier plotter was used to further evaluate the prognostic value based on the expression levels of FANCA in related immune cells. Then,the influence of FANCA knockout on the proliferation,migration,and invasion of A549 and H1299 cells was validated using CCK8,cloning formation,and Transwell assays. Subsequently,HLA-A2-restricted FANCA antigenic peptides were predicted and synthesized by NetMHC4.0 and SYFPEITHI,and DCs were induced and cultured in vitro. Finally,DCs loaded with HLA-A2-restricted FANCA antigenic peptides were co-cultured with autologous peripheral blood lymphocyte to generate specific CTLs. The killing effects of different CTLs on LUAD cells were studied.ResultsThe results showed that high levels of FANCA in patients with LUAD were significantly correlated with worse OS survival,which was correlated with age,clinical stage,pathological T stage,M stage,and N stage in LUAD. Knockdown of FANCA in A549 and H1299 cells significantly inhibited proliferation,metastasis,and invasion in vitro. In addition,FANCA was significantly related to immune infiltrate,genomic alterations and TMB. FANCA expression infuenced the prognosis of LUAD patients by directly affecting immune cell infltration. Finally,HLA-A2-restricted FANCA antigenic peptides were synthesized. And FANCA 146–154 (SLLEFAQYL) antigenic peptide exhibit a stronger affinity for DCs,and induce CTLs to produce stronger targeted killing ability for LUAD cells at an effector-to-target ratio of 40:1.ConclusionThese results demonstrated that the elevation of FANCA promotes malignant phenotype of LUAD,and the potential peptide P2 (SLLEFAQYL) derived from FANCA may be used as an epitope vaccine for the treatment of LUAD.
View Publication
产品类型:
产品号#:
17853
17853RF
100-0699
产品名:
EasySep™人CD8正选试剂盒 II
RoboSep™ 人CD8正选试剂盒 II
EasySep™人CD8阳性选择试剂盒II
F. Borot et al. (May 2025)
Nature Communications 16
Multiplex base editing to protect from CD33 directed drugs for immune and gene therapy
The selection of genetically engineered immune or hematopoietic cells in vivo after gene editing remains a clinical problem and requires a method to spare on-target toxicity to normal cells. Here,we develop a base editing approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate hematopoietic stem and progenitor cells protects myeloid progeny from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo,thus demonstrating potential for improved immunotherapies with reduced off-leukemia toxicity. For broader application to gene therapies,we demonstrate highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes,resulting in long-term persistence of dual gene-edited cells with HbF reactivation in nonhuman primates. Using the CD33 antibody-drug conjugate Gemtuzumab Ozogamicin,we show resistance of engrafted,multiplex edited human cells in vivo,and a 2-fold enrichment for edited cells in vitro. Together,our results highlight the potential of adenine base editors for improved immune and gene therapies. Subject terms: Haematopoietic stem cells,Bone marrow transplantation,Cell biology
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Lee et al. (Aug 2025)
Journal of Translational Medicine 23
Optimizing T cell transduction: a novel transduction device for efficient and scalable gene delivery
Viral transduction is a critical step in the manufacturing of genetically modified T cells for immunotherapies,yet conventional transduction methods suffer from low to medium efficiency,high vector consumption,and limited scalability. To address these challenges,we introduce the Transduction Boosting Device (TransB),an innovative,automated,and closed-system platform designed to enable efficient and scalable gene delivery and overcome the limitations of conventional transduction methods. TransB improves cell-virus interactions by facilitating proximity between target cells and viral vectors. TransB demonstrated up to 1-fold decrease in processing time,3-fold reduction in viral vector consumption,and 0.7-fold increase in transduction efficiency compared to 24—well plate method for donor T cell transduction in studies evaluating its impact on transduction process. Comparison studies transducing T cells from three different donors with Lenti-GFP vectors showed that TransB achieved an average 0.5-fold improvement in transduction efficiencies while maintaining comparable post-transduction cell recovery,viability,growth,and phenotype compared to 24—well plate. Furthermore,TransB delivered consistent performance across two different input cell numbers demonstrating scalability of the process. These findings suggest that TransB could significantly shorten the transduction time,reduce the transduction cost and improve the transduction efficiency for manufacturing genetically modified T cell therapies. It shows strong potential as a robust,efficient,and scalable platform to enhance T cell therapy manufacturing and help overcome current manufacturing challenges in the field. The online version contains supplementary material available at 10.1186/s12967-025-06836-1.
View Publication
产品类型:
产品号#:
100-0785
10970
10990
产品名:
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
Glatigny S et al. (MAY 2016)
Journal of Immunology 196 9 3542--6
Cutting Edge: Integrin α4 Is Required for Regulatory B Cell Control of Experimental Autoimmune Encephalomyelitis.
The neutralization of integrin α4 (Itga4) is currently used as treatment in multiple sclerosis. Although most studies have focused on its function on lymphocyte migration to the CNS,we have uncovered the importance of Itga4 for the generation of regulatory B cells in peripheral immune organs and their control of pathogenic T cell response and CNS pathology. Our study underscores the importance of looking at the dual role of B cells in CNS autoimmunity and provides important perspectives regarding the efficacy and side effects associated with Itga4 neutralization and other B cell-targeting therapies.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
(Nov 2024)
Cells 13 23
Evidence for a Role of the Long Non-Coding RNA ITGB2-AS1 in Eosinophil Differentiation and Functions
Eosinophils,a type of granulocyte derived from myeloid precursors in the bone marrow,are distinguished by their cytoplasmic granules. They play crucial roles in immunoregulation,tissue homeostasis,and host defense,while also contributing to the pathogenesis of various inflammatory diseases. Although long non-coding RNAs (lncRNAs) are known to be involved in eosinophilic conditions,their specific expression and functions within eosinophils have not been thoroughly investigated,largely due to the reliance on tissue homogenates. In an effort to address this gap,we analyzed publicly available high-throughput RNA sequencing data to identify lncRNAs associated with eosinophilic conditions. Among the identified lncRNAs,ITGB2 antisense RNA 1 (ITGB2-AS1) was significantly downregulated in blood eosinophils from patients with hypereosinophilia. To further explore its role in eosinophil biology,we generated a stable ITGB2-AS1 knockdown in the HL-60 cell line. Interestingly,ITGB2-AS1 deficiency led to impaired eosinophil differentiation,as evidenced by a reduction in cytoplasmic granules and decreased expression of key eosinophil granule proteins,including eosinophil peroxidase (EPX) and major basic protein-1 (MBP-1). Additionally,ITGB2-AS1-deficient cells exhibited compromised eosinophil effector functions,with reduced degranulation and impaired production of reactive oxygen species (ROS). These findings suggest that ITGB2-AS1 plays a pivotal role in eosinophil differentiation and function,positioning it as a novel regulator in eosinophil biology.
View Publication
产品类型:
产品号#:
17956
17956RF
产品名:
EasySep™人嗜酸性粒细胞分选试剂盒
RoboSep™ 人嗜酸性粒细胞分选试剂盒
S. Bracha et al. (Jul 2024)
Nature Microbiology 9 8
Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons
Delivering macromolecules across biological barriers such as the blood–brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii,a parasite that naturally travels from the human gut to the central nervous system (CNS),can deliver proteins to host cells. Here we engineered T. gondii ’s endogenous secretion systems,the rhoptries and dense granules,to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells,brain organoids and in vivo,and probe protein activity using imaging,pull-down assays,scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept,we demonstrate GRA16-mediated brain delivery of the MeCP2 protein,a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system,we aim to guide future improvements that will be required for broader application. Subject terms: Parasitology,Biologics,Synthetic biology
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
A. Rodríguez-Martínez et al. (Apr 2025)
Scientific Reports 15
Discovery of Z1362873773: a novel fascin inhibitor from a large chemical library for colorectal cancer
Metastasis is one of the leading causes of cancer-related death worldwide. Fascin,a protein that bundles actin filaments to produce protrusions in cancer cells,plays a significant role in the enhancement of cell migration. This protein has been shown that the overexpression of this protein is related to the appearance of different types of cancer,such as colorectal cancer. In this study,we conducted in silico screening of the Enamine library,a compound library with a broad chemical space. Using a ligand-based virtual screening approach based on the pharmacophore model of G2,we identified the predicted inhibitors. First,these compounds were validated by physicochemical analysis. Differential scanning calorimetry (DSF) was used to study the binding between the predicted compounds and fascin protein,followed by an F-actin bundling assay to determine which compounds inhibited the bundling function of fascin. Z1362873773,which exhibited binding to fascin and inhibited F-actin bundling,was further tested in cell cultures to assess its effects on cancer cell viability and migration as well as in organoid models to evaluate potential cytotoxicity. Finally,we established a protocol that can be applied to discover anti-fascin agents from diverse compound libraries. A new molecule has been identified with considerable fascin inhibitory and migration-arresting capacity,which may lead to the development of new therapies to treat cancer. The online version contains supplementary material available at 10.1038/s41598-025-96457-x. Subject terms: Biochemistry,Biophysics,Cancer,Drug discovery,Molecular biology,Virtual drug screening
View Publication
产品类型:
产品号#:
06010
产品名:
IntestiCult™ 类器官生长培养基 (人)
M. E. Cooke et al. (Oct 2025)
Biofabrication 17 4
Tailoring agarose fluid gels for use in suspension bath bioprinting and culture of spheroid-based bioinks
Suspension bath bioprinting,whereby bioinks are extruded into a yield stress bath with rapid recovery from shearing,has enabled the printing of low viscosity bioinks into constructs with high geometric complexity. Previous studies have often relied upon external stabilisation of the suspension bath (e.g. collagen) in order to culture soft materials without loss of printed structure. Here,we report a systematic investigation of suspension bath properties that support the printing,fusion,and culture of spheroid-based bioinks without added stabilisation. Specifically,agarose fluid gels of varied polymer concentrations and dilutions were produced and characterised morphologically and rheologically. Juvenile bovine chondrocytes or mesenchymal stromal cells (MSCs) were formed into spheroids of ∼150 µ m in diameter and investigated within agarose suspension baths either for their fusion in hanging drop cultures or as jammed bioinks. MSC spheroids were also printed when mixed with hydrogel microparticles to demonstrate additional versatility to the approach. Suspension baths of lower polymer concentrations and increased dilution enabled faster spheroid fusion; however,the most heavily diluted suspension bath was unable to maintain print fidelity. Other formulations supported the printing,fusion,and culture of spheroid-based inks,either as simple lines or more complex patterns. These findings help to inform the design of suspension baths for bioprinting and culture.
View Publication
产品类型:
产品号#:
34411
34415
34421
34425
34450
34460
产品名:
AggreWell™ 400 24孔板,1个
AggreWell™400 24孔板,5个
AggreWell™ 400 6孔板,1个
AggreWell™ 400 6孔板,5个
AggreWell™400 24孔板启动套装
AggreWell™ 400 6孔板启动套装
Calleja V et al. ( 2009)
PLoS biology 7 1 e17
Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition.
Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised,thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently,the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator,phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling,classical biochemical assays,and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM),a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore,these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs.
View Publication