Herreros-Villanueva M et al. ( 2013)
Oncogenesis 2 e61
SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.
SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance,in which it impairs cell growth and tumorigenicity. However,the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report,we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However,ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction,whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1,ESA and CD44. Importantly,we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover,we show that SOX2 directly binds to the Snail,Slug and Twist promoters,leading to a loss of E-Cadherin and ZO-1 expression. Taken together,our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype,suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Trilck et al. ( 2013)
Orphanet journal of rare diseases 8 144
Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks.
BACKGROUND: Niemann-Pick type C1 disease (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. In this lysosomal storage disorder the intracellular transport and sequestration of several lipids like cholesterol is severely impaired,resulting in an accumulation of lipids in late endosomes and lysosomes. The neurological manifestation of the disease is caused by dysfunction and cell death in the central nervous system. Several animal models were used to analyze the impaired pathways. However,the underlying pathogenic mechanisms are still not completely understood and the genetic variability in humans cannot be reflected in these models. Therefore,a human model using patient-specific induced pluripotent stem cells provides a promising approach. METHODS: We reprogrammed human fibroblasts from a NPC1 patient and a healthy control by retroviral transduction with Oct4,Klf4,Sox2 and c-Myc. The obtained human induced pluripotent stem cells (hiPSCs) were characterized by immunocytochemical analyses. Neural progenitor cells were generated and patch clamp recordings were performed for a functional analysis of derived neuronal cells. Filipin stainings and the Amplex Red assay were used to demonstrate and quantify cholesterol accumulation. RESULTS: The hiPSCs expressed different stem cell markers,e.g. Nanog,Tra-1-81 and SSEA4. Using the embryoid body assay,the cells were differentiated in cells of all three germ layers and induced teratoma in immunodeficient mice,demonstrating their pluripotency. In addition,neural progenitor cells were derived and differentiated into functional neuronal cells. Patch clamp recordings revealed voltage dependent channels,spontaneous action potentials and postsynaptic currents. The accumulation of cholesterol in different tissues is the main hallmark of NPC1. In this study we found an accumulation of cholesterol in fibroblasts of a NPC1 patient,derived hiPSCs,and neural progenitor cells,but not in cells derived from fibroblasts of a healthy individual. These findings were quantified by the Amplex Red assay,demonstrating a significantly elevated cholesterol level in cells derived from fibroblasts of a NPC1 patient. CONCLUSIONS: We generated a neuronal model based on induced pluripotent stem cells derived from patient fibroblasts,providing a human in vitro model to study the pathogenic mechanisms of NPC1 disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Sousa-Ferreira L et al. ( 2014)
PloS one 9 3 e88917
Fluoxetine induces proliferation and inhibits differentiation of hypothalamic neuroprogenitor cells in vitro.
A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore,it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus,the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells,as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover,fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells,as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally,fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides,including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides.
View Publication
产品类型:
产品号#:
73142
73144
产品名:
Medina EA et al. (OCT 2014)
Leukemia 28 10 2080--9
PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.
Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes,but paradoxically decreased in obesity,that has been implicated in MM progression. Herein,we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA),which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK,in turn,induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated,at least in part,by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC),which is essential to lipogenesis. Supplementation with palmitic acid,the preliminary end product of fatty acid synthesis,rescues MM cells from adiponectin-induced apoptosis. Furthermore,5-(tetradecyloxy)-2-furancarboxylic acid (TOFA),an ACC inhibitor,exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus,adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators,or inhibitors of ACC,may be useful adjuvants to treat MM. Moreover,the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia,as occurs in obesity,promotes MM tumor progression.
View Publication
产品类型:
产品号#:
18357
18357RF
产品名:
Watson CL et al. (NOV 2014)
Nature Medicine 20 11 1310--4
An in vivo model of human small intestine using pluripotent stem cells.
Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes,for pharmacologic studies and as a potential resource for therapeutic transplant. To date,limited in vivo models exist for human intestine,all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here,we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme,both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme,as demonstrated by differentiated intestinal cell lineages (enterocytes,goblet cells,Paneth cells,tuft cells and enteroendocrine cells),presence of functional brush-border enzymes (lactase,sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore,transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection,suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology,disease and translational studies.
View Publication
产品类型:
产品号#:
05854
05855
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mFreSR™
mFreSR™
mTeSR™1
mTeSR™1
Reeves SR et al. (JAN 2015)
Respiratory research 16 21
Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children.
BACKGROUND: Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs. METHODS: BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin ($$-SMA) and flow cytometry was used to assay for $$-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments,we investigated the role of TGF$$2 in BEC-HLF co-cultures using monoclonal antibody inhibition. RESULTS: Expression of $$-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs,but not different than $$-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less $$-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGF$$2 led to similar expression of $$-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone. CONCLUSION: These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGF$$2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Pei Y et al. (MAY 2016)
Brain research 1638 Pt A 57--73
Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes.
Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here,we report on the comparative cytotoxicity of 80 compounds (neurotoxicants,developmental neurotoxicants,and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC),neurons,and astrocytes. All compounds were tested over a 24-h period at 10 and 100$\$,in duplicate,with cytotoxicity measured using the MTT assay. Of the 80 compounds tested,50 induced significant cytotoxicity in at least one cell type; per cell type,32,38,46,and 41 induced significant cytotoxicity in iPSC,NSC,neurons,and astrocytes,respectively. Four compounds (valinomycin,3,3',5,5'-tetrabromobisphenol,deltamethrin,and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1,10,and 100$\$ using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone,we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally,the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Stebbins MJ et al. (MAY 2016)
Methods (San Diego,Calif.) 101 93--102
Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells.
The blood-brain barrier (BBB) is a critical component of the central nervous system (CNS) that regulates the flux of material between the blood and the brain. Because of its barrier properties,the BBB creates a bottleneck to CNS drug delivery. Human in vitro BBB models offer a potential tool to screen pharmaceutical libraries for CNS penetration as well as for BBB modulators in development and disease,yet primary and immortalized models respectively lack scalability and robust phenotypes. Recently,in vitro BBB models derived from human pluripotent stem cells (hPSCs) have helped overcome these challenges by providing a scalable and renewable source of human brain microvascular endothelial cells (BMECs). We have demonstrated that hPSC-derived BMECs exhibit robust structural and functional characteristics reminiscent of the in vivo BBB. Here,we provide a detailed description of the methods required to differentiate and functionally characterize hPSC-derived BMECs to facilitate their widespread use in downstream applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Takahashi K et al. (NOV 2007)
Cell 131 5 861--72
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells,capable of germline transmission,from mouse somatic cells by transduction of four defined transcription factors. Here,we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4,Sox2,Klf4,and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology,proliferation,surface antigens,gene expression,epigenetic status of pluripotent cell-specific genes,and telomerase activity. Furthermore,these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
72602
85850
85857
85870
85875
产品名:
OAC1
mTeSR™1
mTeSR™1
Grajales L et al. (APR 2010)
Journal of molecular and cellular cardiology 48 4 735--45
Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential,previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage,culture milieu,and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin(-) BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine+2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA+5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA,39% and LS,28%). A second sequential enrichment for the dihydropyridine receptor subunit alpha2delta1 (DHPR-alpha2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1(+) enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca(2+) transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion,IP CD117/Sca-1(+) murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore,temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-alpha2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.
View Publication
产品类型:
产品号#:
19771
产品名:
EasySep™ 小鼠间充质干/祖细胞富集试剂盒
Isnardi I et al. (JUN 2010)
Blood 115 24 5026--36
Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.
Complement receptor 2-negative (CR2/CD21(-)) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However,the physiology of CD21(-/lo) B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21(-/lo) B cells in their blood. A majority of CD21(-/lo) B cells from RA and CVID patients expressed germline autoreactive antibodies,which recognized nuclear and cytoplasmic structures. In addition,these B cells were unable to induce calcium flux,become activated,or proliferate in response to B-cell receptor and/or CD40 triggering,suggesting that these autoreactive B cells may be anergic. Moreover,gene array analyses of CD21(-/lo) B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus,CD21(-/lo) B cells contain mostly autoreactive unresponsive clones,which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Leung HW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 165--72
Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures.
One of the factors that can impact human embryonic stem cell expansion in stirred microcarrier culture reactors is mechanical stress caused by agitation. Therefore,we have investigated the effects of agitation on human embryonic stem cell growth and expression of pluripotent markers. Agitation of HES-2 cell line in microcarrier cultures in stirred spinner and agitated six-well plates did not affect expression of pluripotent markers,cell viability,and cell doubling times even after seven passages. However,HES-3 cell line was found to be shear sensitive,showing downregulation of three pluripotent markers Oct-4,mAb 84,and Tra-1-60,and lower cell densities in agitated as compared with static cultures,even after one passage. Cell viability was unaffected. The HES-3-agitated cultures showed increased expression of genes and proteins of the three germ layers. We were unable to prevent loss of pluripotent markers or restore doubling times in agitated HES-3 microcarrier cultures by addition of five different known cell protective polymers. In addition,the human induced pluripotent cell line IMR90 was also shown to differentiate in agitated conditions. These results indicate that the effect of agitation on cell growth and differentiation is cell line specific. We assume that the changes in the growth and differentiation of the agitation-sensitive (HES-3) cell line do not result from the effect of shear stress directly on cell viability,but rather by signaling effects that influence the cells to differentiate resulting in slower growth.
View Publication