Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity
Centrioles define centrosome structure and function. Deregulation of centriole numbers can cause developmental defects and cancer. The p53 tumor suppressor limits the growth of cells lacking or harboring additional centrosomes and can be engaged by the “mitotic surveillance” or the “PIDDosome pathway”,respectively. Here,we show that early B cell progenitors frequently present extra centrioles,ensuing their high proliferative activity and related DNA damage. Extra centrioles are efficiently cleared during B cell maturation. In contrast,centriole loss upon Polo-like kinase 4 (Plk4) deletion causes apoptosis and arrests B cell development. This defect can be rescued by co-deletion of Usp28,a critical component of the mitotic surveillance pathway,that restores cell survival and maturation. Centriole-deficient mature B cells are proliferation competent and mount a humoral immune response. Our findings imply that progenitor B cells are intolerant to centriole loss but permissive to centriole amplification,a feature potentially facilitating their malignant transformation. Centrioles organize chromosome segregation,migration,and the immune synapse. Here,Schapfl et al. show that B cell progenitors tolerate centriole overamplification,but not loss,while mature B cells can mount a humoral immune response in their absence.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
(Dec 2024)
International Journal of Molecular Sciences 25 23
Single-Cell RNA Sequencing of PBMCs Identified Junction Plakoglobin (JUP) as Stratification Biomarker for Endometriosis
This study aimed to identify unique characteristics in the peripheral blood mononuclear cells (PBMCs) of endometriosis patients and develop a non-invasive early diagnostic tool. Using single-cell RNA sequencing (scRNA-seq),we constructed the first single-cell atlas of PBMCs from endometriosis patients based on 107,964 cells and 25,847 genes. Within CD16+ monocytes,we discovered JUP as a dysregulated gene. To assess its diagnostic potential,we measured peritoneal fluid (PF) and serum JUP levels in a large cohort of 199 patients including 20 women with ovarian cancer (OC). JUP was barely detectable in PF but was significantly elevated in the serum of patients with endometriosis and OC,with levels 1.33 and 2.34 times higher than controls,respectively. Additionally,JUP was found in conditioned culture media of CD14+/CD16+ monocytes aligning with our scRNA-seq data. Serum JUP levels correlated with endometriosis severity and endometrioma presence but were unaffected by dysmenorrhea,menstrual cycle,or adenomyosis. When combined with CA125 (cancer antigen 125) JUP enhanced the specificity of endometriosis diagnosis from 89.13% (CA125 measured alone) to 100%. While sensitivity remains a challenge at 19%,our results suggest that JUP’s potential to enhance diagnostic accuracy warrants additional investigation. Furthermore,employing serum JUP as a stratification marker unlocked the potential to identify additional endometriosis-related genes,offering novel insights into disease pathogenesis.
View Publication
产品类型:
产品号#:
19058
18000
19058RF
100-1525
产品名:
EasySep™人单核细胞富集试剂盒(不去除CD16)
EasySep™磁极
RoboSep™ 人单核细胞富集试剂盒(不去除CD16)含滤芯吸头
EasySep™人单核细胞富集试剂盒(不去除CD16)
(Jul 2025)
Cell Reports Medicine 6 7
Cardiolipin-mimic lipid nanoparticles without antibody modification delivered senolytic in vivo CAR-T therapy for inflamm-aging
SummarymRNA-based in vivo chimeric antigen receptor (CAR)-T cell engineering offers advantages over ex vivo therapies,including streamlined manufacturing and transient expression. However,current delivery methods require antibody-modified vehicles with manufacturing challenges. In this study,inspired by cardiolipin,we identify cardiolipin-like di-phosphoramide lipids that improve T cell transfection without targeting ligands,both in vitro and in vivo. The T cell-favored tropism is likely due to the lipid’s packing,shape,and rigidity. Encapsulating circular RNA further prolongs mRNA expression in the spleen and T cells. Using PL40 lipid nanoparticles,we deliver mRNA encoding a CAR targeting the senolytic and inflammatory antigen urokinase-type plasminogen activator receptor (uPAR),alleviating uPAR-related liver fibrosis and rheumatoid arthritis (RA). Single-cell sequencing in humans confirms uPAR’s relevance to senescence and inflammation in RA. To facilitate clinical translation,we screen and humanize single-chain variable fragments (scFvs) against uPAR,establishing a PL40 mRNA-encoded humanized uPAR CAR with potential for treating aging-inflamed disorders. Graphical abstract Highlights•Cardiolipin-mimic phosphoramide (CAMP) LNPs transfect T cells without antibody modification•Circular mRNA prolongs mRNA expression•Senolytic in vivo CAR-T treats inflamm-aging disease (liver fibrosis and rheumatoid arthritis)•Develop humanized anti-human uPAR scFv Zhang et al. develop Cardiolipin-mimic phosphoramide (CAMP) lipids,which enable T cell transfection without antibody modification. Using CAMP-based LNPs,they generate senolytic CAR-T cells in vivo to target inflamm-aging diseases. Additionally,they employ circular mRNA to prolong transgene expression. The authors also engineer a humanized anti-human uPAR scFv for clinically relevant applications.
View Publication
产品类型:
产品号#:
100-0784
10971
10991
17951
100-0695
17951RF
19851
19851RF
产品名:
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™小鼠T细胞分选试剂盒
RoboSep™ 小鼠T细胞分选试剂盒
K. K. Edmonds et al. (Jul 2025)
Nature Communications 16
Structure and biochemistry-guided engineering of an all-RNA system for DNA insertion with R2 retrotransposons
R2 elements,a class of non-long terminal repeat (non-LTR) retrotransposons,have the potential to be harnessed for transgene insertion. However,efforts to achieve this are limited by our understanding of the retrotransposon mechanisms. Here,we structurally and biochemically characterize R2 from Taeniopygia guttata (R2Tg). We show that R2Tg cleaves both strands of its ribosomal DNA target and binds a pseudoknotted RNA element within the R2 3′ UTR to initiate target-primed reverse transcription. Guided by these insights,we engineer and characterize an all-RNA system for transgene insertion. We substantially reduce the system’s size and insertion scars by eliminating unnecessary R2 sequences on the donor. We further improve the integration efficiency by chemically modifying the 5′ end of the donor RNA and optimizing delivery,creating a compact system that achieves over 80% integration efficiency in several human cell lines. This work expands the genome engineering toolbox and provides mechanistic insights that will facilitate future development of R2-mediated gene insertion tools. Subject terms: Transferases,Protein design,Genetic engineering
View Publication
产品类型:
产品号#:
100-0956
10981
产品名:
ImmunoCult™ XF培养基
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
M. Robinson et al. (apr 2019)
Biosensors 9 2
A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues.
We have designed and validated a set of robust and non-toxic protocols for directly evaluating the properties of engineered neural tissue. These protocols characterize the mechanical properties of engineered neural tissues and measure their electrophysical activity. The protocols obtain elastic moduli of very soft fibrin hydrogel scaffolds and voltage readings from motor neuron cultures. Neurons require soft substrates to differentiate and mature,however measuring the elastic moduli of soft substrates remains difficult to accurately measure using standard protocols such as atomic force microscopy or shear rheology. Here we validate a direct method for acquiring elastic modulus of fibrin using a modified Hertz model for thin films. In this method,spherical indenters are positioned on top of the fibrin samples,generating an indentation depth that is then correlated with elastic modulus. Neurons function by transmitting electrical signals to one another and being able to assess the development of electrical signaling serves is an important verification step when engineering neural tissues. We then validated a protocol wherein the electrical activity of motor neural cultures is measured directly by a voltage sensitive dye and a microplate reader without causing damage to the cells. These protocols provide a non-destructive method for characterizing the mechanical and electrical properties of living spinal cord tissues using novel biosensing methods.
View Publication
产品类型:
产品号#:
05832
05833
05835
05839
100-0485
07174
27215
27250
27216
27217
27260
27270
34811
34850
34815
34821
34825
05990
34860
100-1077
产品名:
STEMdiff™ 神经花环选择试剂
STEMdiff™神经前体细胞培养基
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
温和细胞解离试剂
37µm可逆滤筛,小 (15 mL)
37µm可逆滤筛,大 (50 mL)
70µm可逆滤筛,小 (15 mL)
100µm可逆滤筛,小 (15 mL)
70µm可逆滤筛,大 (50 mL)
100µm可逆滤筛,大 (50 mL)
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
TeSR™-E8™
AggreWell™ 800 6孔板启动套装
ReLeSR™
Cesaro A et al. (SEP 2012)
PLoS ONE 7 9 e45478
An inflammation loop orchestrated by S100A9 and Calprotectin is critical for development of arthritis
OBJECTIVE: The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity.backslashnbackslashnMETHODS: In this study,we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion.backslashnbackslashnRESULTS: Treatment with anti-S100A9 antibodies improved the clinical score by 50%,diminished immune cell infiltration,reduced inflammatory cytokines,both in serum and in the joints,and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα,IL-1β and IL-6,and of chemokines like MIP-1α and MCP-1.backslashnbackslashnCONCLUSION: The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively,our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore,S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
15028
15068
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
Alisson-Silva F et al. (MAY 2014)
Glycobiology 24 5 458--468
Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation
Induced pluripotent stem (iPS) cells are somatic cells that have been reprogrammed to a pluripotent state via the introduction of defined transcription factors. Although iPS is a potentially valuable resource for regenerative medicine and drug development,several issues regarding their pluripotency,differentiation propensity and potential for tumorigenesis remain to be elucidated. Analysis of cell surface glycans has arisen as an interesting tool for the characterization of iPS. An appropriate characterization of glycan surface molecules of human embryonic stem (hES) cells and iPS cells might generate crucial data to highlight their role in the acquisition and maintenance of pluripotency. In this study,we characterized the surface glycans of iPS generated from menstrual blood-derived mesenchymal cells (iPS-MBMC). We demonstrated that,upon spontaneous differentiation,iPS-MBMC present high amounts of terminal $\$-galactopyranoside residues,pointing to an important role of terminal-linked sialic acids in pluripotency maintenance. The removal of sialic acids by neuraminidase induces iPS-MBMC and hES cells differentiation,prompting an ectoderm commitment. Exposed $\$-galactopyranose residues might be recognized by carbohydrate-binding molecules found on the cell surface,which could modulate intercellular or intracellular interactions. Together,our results point for the first time to the involvement of the presence of terminal sialic acid in the maintenance of embryonic stem cell pluripotency and,therefore,the modulation of sialic acid biosynthesis emerges as a mechanism that may govern stem cell differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
60093
60093.1
60093AD
60093AD.1
60093PE
60093PE.1
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
抗人OCT4(OCT3)抗体,克隆3A2A20
抗人OCT4(OCT3)抗体,clone 3A2A20
抗人OCT4(OCT3)抗体,克隆3A2A20,Alexa Fluor® 488
抗人OCT4(OCT3)抗体,克隆3A2A20,Alexa Fluor® 488
抗人OCT4(OCT3)抗体,克隆3A2A20,PE
抗人OCT4(OCT3)抗体,克隆3A2A20,PE
mTeSR™1
mTeSR™1
Zheng X et al. (MAR 2016)
eLife 5
Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration.
mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here,we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels,particularly when oxidative phosphorylation is impaired,such as in neurons treated with mitochondrial inhibitors,or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly,in mitochondrially defective neurons,but not neuroprogenitor cells,ribosomal S6 and S6 kinase phosphorylation increased over time,despite activation of AMPK,which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis,a major energy-consuming process,may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Mao J et al. (OCT 2015)
Aging Cell 14 5 784--796
A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation
Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study,we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents,asarones,promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt,two critical kinase cascades for neurogenesis. Consistently,the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones,which can be orally administrated,could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
C. Gu et al. (jul 2019)
Journal of immunology (Baltimore,Md. : 1950) 203 2 389--399
Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation.
The types and magnitude of Ag-specific immune responses can be determined by the functional plasticity of dendritic cells (DCs). However,how DCs display functional plasticity and control host immune responses have not been fully understood. In this study,we report that ligation of DC-asialoglycoprotein receptor (DC-ASGPR),a C-type lectin receptor (CLR) expressed on human DCs,resulted in rapid activation of Syk,followed by PLCgamma2 and PKCdelta engagements. However,different from other Syk-coupled CLRs,including Dectin-1,signaling cascade through DC-ASGPR did not trigger NF-kappaB activation. Instead,it selectively activated MAPK ERK1/2 and JNK. Rapid and prolonged phosphorylation of ERK1/2 led to sequential activation of p90RSK and CREB,which consequently bound to IL10 promoter and initiated cytokine expression. In addition,DC-ASGPR ligation activated Akt,which differentially regulated the activities of GSK-3alpha/beta and beta-catenin and further contributed to IL-10 expression. Our observations demonstrate that DC-ASGPR induces IL-10 expression via an intrinsic signaling pathway,which provides a molecular explanation for DC-ASGPR-mediated programing of DCs to control host immune responses.
View Publication
Lee et al. (Feb 2025)
Stem Cell Research & Therapy 16 1
Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) have greater potential for generating chondrocytes without hypertrophic and fibrotic phenotypes compared to bone marrow-derived mesenchymal stem/stromal cells (BMSCs). However,there is a lack of research demonstrating the use of autologous iMSCs for repairing articular chondral lesions in large animal models. In this study,we aimed to evaluate the effectiveness of autologous miniature pig (minipig) iMSC-chondrocyte (iMSC-Ch)-laden implants in comparison to autologous BMSC-chondrocyte (BMSC-Ch)-laden implants for cartilage repair in porcine femoral condyles. iMSCs and BMSCs were seeded into fibrin glue/nanofiber constructs and cultured with chondrogenic induction media for 7 days before implantation. To assess the regenerative capacity of the cells,19 skeletally mature Yucatan minipigs were randomly divided into microfracture control,acellular scaffold,iMSC,and BMSC subgroups. A cylindrical defect measuring 7 mm in diameter and 0.6 mm in depth was created on the articular cartilage surface without violating the subchondral bone. The defects were then left untreated or treated with acellular or cellular implants. Both cellular implant-treated groups exhibited enhanced joint repair compared to the microfracture and acellular control groups. Immunofluorescence analysis yielded significant findings,showing that cartilage treated with iMSC-Ch implants exhibited higher expression of COL2A1 and minimal to no expression of COL1A1 and COL10A1,in contrast to the BMSC-Ch-treated group. This indicates that the iMSC-Ch implants generated more hyaline cartilage-like tissue compared to the BMSC-Ch implants. Our findings contribute to filling the knowledge gap regarding the use of autologous iPSC derivatives for cartilage repair in a translational animal model. Moreover,these results highlight their potential as a safe and effective therapeutic strategy. The online version contains supplementary material available at 10.1186/s13287-025-04215-7.
View Publication