S. Acharya et al. (Jun 2024)
Nature Communications 15
PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise,with a negligible affinity for mismatched substrates,but its low cellular targeting efficiency limits therapeutic use. Here,we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency,knock-in rates,and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally,we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor,highlighting its therapeutic utility. Subject terms: CRISPR-Cas9 genome editing,Molecular medicine,Genetic engineering,CRISPR-Cas9 genome editing
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Z. Luo et al. (Oct 2025)
Stem Cells Translational Medicine 14 10
Oligodendrogenic neural progenitors for treatment of chronic compressive cervical spinal cord injury
Chronic compressive cervical spinal cord injury (cCSCI),a debilitating condition,lacks effective treatment options. Addressing this gap,our study introduces a novel rat model of cCSCI developed through spinal cord compression via synthetic polyether sheet implantation,closely mimicking human pathology. We evaluated the model’s fidelity utilizing a comprehensive series of behavioral,electrophysiological,and histological assessments. Our research also explored the therapeutic potential of oligodendrogenic neural progenitor cells (oNPCs) derived from induced pluripotent stem cells. Transplanted oNPCs successfully integrated into the host spinal cord,differentiated into neurons,astrocytes,and oligodendrocytes,and demonstrated a remarkable capacity for enhancing neuroplasticity. Electrophysiological analyses revealed significant improvements in motor evoked potentials and a rectification of the excitability imbalance posttransplantation,indicating substantial recovery of motor circuits. Histological findings complemented these results,showing enhanced remyelination and a reduction in excitatory transmitter expression in the residual gray matter. Functionally,the transplantation of oNPCs led to marked improvements in grip strength,locomotor abilities,and sensory functions,surpassing those seen with standard treatments. This study not only provides a novel and reliable rat model of cCSCI for further research but also highlights the potential of oNPCs as a transformative approach for spinal cord injury therapy,suggesting their significant role in neural regeneration and repair.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
挂图
Innate Lymphoid Cells
Overview of innate lymphoid cells (ILCs) development, classification, plasticity and functional diversity
Osakada F et al. (JAN 2009)
Nature protocols 4 6 811--24
Stepwise differentiation of pluripotent stem cells into retinal cells.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. They can maintain an undifferentiated state indefinitely and can differentiate into derivatives of all three germ layers,namely ectoderm,endoderm and mesoderm. Although much progress has been made in the propagation and differentiation of ES cells,induction of photoreceptors has generally required coculture with or transplantation into developing retinal tissue. Here,we describe a protocol for generating retinal cells from ES cells by stepwise treatment with defined factors. This method preferentially induces photoreceptor and retinal pigment epithelium (RPE) cells from mouse and human ES cells. In our protocol,differentiation of RPE and photoreceptors from mouse ES cells requires 28 d and the differentiation of human ES cells into mature RPE and photoreceptors requires 120 and 150 d,respectively. This differentiation system and the resulting pluripotent stem cell-derived retinal cells will facilitate the development of transplantation therapies for retinal diseases,drug testing and in vitro disease modeling. It will also improve our understanding of the development of the central nervous system,especially the eye.
View Publication
产品类型:
产品号#:
72082
产品名:
DAPT
C. Li et al. (Dec 2024)
Nature Communications 15
Human respiratory organoids sustained reproducible propagation of human rhinovirus C and elucidation of virus-host interaction
The lack of a robust system to reproducibly propagate HRV-C,a family of viruses refractory to cultivation in standard cell lines,has substantially hindered our understanding of this common respiratory pathogen. We sought to develop an organoid-based system to reproducibly propagate HRV-C,and characterize virus-host interaction using respiratory organoids. We demonstrate that airway organoids sustain serial virus passage with the aid of CYT387-mediated immunosuppression,whereas nasal organoids that more closely simulate the upper airway achieve this without any intervention. Nasal organoids are more susceptible to HRV-C than airway organoids. Intriguingly,upon HRV-C infection,we observe an innate immune response that is stronger in airway organoids than in nasal organoids,which is reproduced in a Poly(I:C) stimulation assay. Treatment with α-CDHR3 and antivirals significantly reduces HRV-C viral growth in airway and nasal organoids. Additionally,an organoid-based immunofluorescence assay is established to titrate HRV-C infectious particles. Collectively,we develop an organoid-based system to reproducibly propagate the poorly cultivable HRV-C,followed by a comprehensive characterization of HRV-C infection and innate immunity in physiologically active respiratory organoids. The organoid-based HRV-C infection model can be extended for developing antiviral strategies. More importantly,our study has opened an avenue for propagating and studying other uncultivable human and animal viruses. Subject terms: Virus-host interactions,Viral pathogenesis,Respiratory tract diseases
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Dobo I et al. (DEC 1999)
Journal of hematotherapy & stem cell research 8 6 601--7
Endogenous erythroid and megakaryocytic colony formation in serum-free, cytokine-free collagen gels.
We studied the suitability of collagen-based semisolid medium for assay of endogenous erythroid colony formation performed in myeloproliferative disorders. Bone marrow (BM) mononuclear cells (MNC) from 103 patients suspected of having polycythemia vera (PV,76 patients) or essential thrombocythemia (ET,27 patients) were grown in collagen-based,serum-free,cytokine-free semisolid medium. Colony analysis at day 8 or 10 showed that this collagen assay is specific,as endogenous growth of erythroid colonies was never observed in cultures of 16 healthy donors and 6 chronic myelogenous leukemia (CML) patients. Endogenous erythroid colony formation was observed in 53.3% of patients suspected of PV,with only 15.4% of positive cultures for patients with 1 minor PV criterion and 72% (p = 0.009) of positive cultures for patients with textgreater or =2 minor or 1 major PV criterion. Similarly,endogenous growth of erythroid colonies was found in 44.4% of patients suspected of ET,with 31.6% of positive cultures for patients with 1 ET criterion versus 75% for patients with textgreater or =2 ET criteria. In addition,we found that in collagen gels,tests of erythropoietin (EPO) hypersensitivity in the presence of 0.01 or 0.05 U/ml of EPO and tests of endogenous colony-forming units-megakaryocyte (CFU-MK) formation cannot be used to detect PV or ET,as these tests were positive for,respectively,21.4% and 50% of healthy donors and 83% and 50% of CML patients. A retrospective analysis suggests that collagen assays are more sensitive than methylcellulose assays to assess endogenous growth of erythroid colonies. In summary,serum-free collagen-based colony assays are simple and reliable assays of endogenous growth of erythroid colonies in myeloproliferative diseases. They also appear to be more sensitive than methylcellulose-based assays.
View Publication
产品类型:
产品号#:
04961
04965
04962
04915
04807
04809
04906
04913
04803
04804
04905
04850
04974
04902
04960
04900
04901
04963
04970
04971
产品名:
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C cfu染色试剂盒
MegaCult™-C含脂培养基
MegaCult™-C胶原蛋白和脂质培养基
胶原蛋白溶液
MegaCult™-C胶原蛋白和不含细胞因子的培养基
MegaCult™-C培养基无细胞因子
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
Marwali MR et al. (SEP 2004)
Journal of immunology (Baltimore,Md. : 1950) 173 5 2960--7
Lipid rafts mediate association of LFA-1 and CD3 and formation of the immunological synapse of CTL.
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3,LFA-1,and signaling molecules. However,the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study,we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL,but not resting T cells,colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse,which is formed by LFA-1,CD3,and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent,but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse,and facilitates efficient and rapid activation of CTL.
View Publication
产品类型:
产品号#:
18554
18554RF
18564
18564RF
产品名:
(Feb 2024)
bioRxiv 133
Metformin Enhances Antibody-Mediated Recognition of HIV-Infected CD4
SUMMARYThe mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-weeks supplementation of antiretroviral therapy (ART) with metformin,an indirect mTOR inhibitor used in type-2 diabetes treatment,reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T-cells,together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein,we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T-cells from ART-treated PWH,and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1,metformin decreased virion release,but increased the frequency of productively infected CD4lowHIV-p24+ T-cells. These observations coincided with increased BST2/Tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression,and improved recognition of productively infected T-cells by HIV-1 Envelope antibodies. Thus,metformin exerts pleiotropic effects on post-transcription/translation steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH. Graphical Abstract
View Publication
产品类型:
产品号#:
19157
19157RF
产品名:
EasySep™人记忆CD4+ T细胞富集试剂盒
RoboSep™ 人记忆CD4 T细胞富集试剂盒含滤芯吸头
J. Dai et al. (Mar 2025)
Molecular Cancer 24 1
NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are remarkably effective for treating EGFR-mutant non-small cell lung cancer (NSCLC). However,patients inevitably develop acquired drug resistance,resulting in recurrence or metastasis. It is important to identify novel effective therapeutic targets to reverse acquired TKI resistance. Bioinformatics analysis revealed that nicotinamide N-methyltransferase (NNMT) was upregulated in EGFR-TKI resistant cells and tissues via EGR1-mediated transcriptional activation. High NNMT levels were correlated with poor prognosis in EGFR-mutated NSCLC patients,which could promote resistance to EGFR-TKIs in vitro and in vivo. Mechanistically,NNMT catalyzed the conversion of nicotinamide to 1-methyl nicotinamide by depleting S-adenosyl methionine (the methyl group donor),leading to a reduction in H3K9 trimethylation (H3K9me3) and H3K27 trimethylation (H3K27me3) and subsequent epigenetic activation of EGR1 and ALDH3A1. In addition,ALDH3A1 activation increased lactic acid levels,which further promoted NNMT expression via p300-mediated histone H3K18 lactylation on its promoter. Thus,NNMT mediates the formation of a double positive feedback loop via EGR1 and lactate,EGR1/NNMT/EGR1 and NNMT/ALDH3A1/lactate/NNMT. Moreover,the combination of a small-molecule inhibitor for NNMT (NNMTi) and osimertinib exhibited promising potential for the treatment of TKI resistance in an NSCLC osimertinib-resistant xenograft model. The combined contribution of these two positive feedback loops promotes EGFR-TKI resistance in NSCLC. Our findings provide new insight into the role of histone methylation and histone lactylation in TKI resistance. The pivotal NNMT-mediated positive feedback loop may serve as a powerful therapeutic target for overcoming EGFR-TKI resistance in NSCLC. The online version contains supplementary material available at 10.1186/s12943-025-02285-y.
View Publication
产品类型:
产品号#:
01700
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™测定缓冲液
A. S. H. Chan et al. ( 2016)
PloS one 11 11 e0165909
Imprime PGG (Imprime),an intravenously-administered,soluble $\beta$-glucan,has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically,Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells,triggering a coordinated anti-cancer immune response. Herein,using whole blood from healthy human subjects,we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring,anti-$\beta$ glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement,primarily via the classical complement pathway,and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa,eliciting phenotypic activation of,and enhanced chemokine production by,neutrophils and monocytes,enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly,these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together,these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.
View Publication
产品类型:
产品号#:
19666
100-0404
产品名:
EasySep™ Direct人中性粒细胞分选试剂盒
RoboSep™ 人中性粒细胞分选试剂盒
Cai S et al. (APR 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 8 2195--206
Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity.
PURPOSE: Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However,one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example,hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens,but in vivo models to assess potential toxicities have not been developed. In this study,a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity. EXPERIMENTAL DESIGN: A proof-of-concept,temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing because it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/Sz (NOD/SCID/γchain(null)),reconstituted with human hematopoietic cells,and the impact of treatment on human hematopoiesis was evaluated. RESULTS: The dose-intensive regimen resulted in significant decreases in growth of human glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow,flow cytometric analyses indicated that the human bone marrow cells were significantly more sensitive to treatment than the murine bone marrow cells and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor,lymphoid,and myeloid). CONCLUSIONS: The humanized bone marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anticancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.
View Publication