Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide.
The farnesyltransferase inhibitor tipifarnib exhibits modest activity against acute myelogenous leukemia. To build on these results,we examined the effect of combining tipifarnib with other agents. Tipifarnib inhibited signaling downstream of the farnesylated small G protein Rheb and synergistically enhanced etoposide-induced antiproliferative effects in lymphohematopoietic cell lines and acute myelogenous leukemia isolates. We subsequently conducted a phase 1 trial of tipifarnib plus etoposide in adults over 70 years of age who were not candidates for conventional therapy. A total of 84 patients (median age,77 years) received 224 cycles of oral tipifarnib (300-600 mg twice daily for 14 or 21 days) plus oral etoposide (100-200 mg daily on days 1-3 and 8-10). Dose-limiting toxicities occurred with 21-day tipifarnib. Complete remissions were achieved in 16 of 54 (30%) receiving 14-day tipifarnib versus 5 of 30 (17%) receiving 21-day tipifarnib. Complete remissions occurred in 50% of two 14-day tipifarnib cohorts: 3A (tipifarnib 600,etoposide 100) and 8A (tipifarnib 400,etoposide 200). In vivo,tipifarnib plus etoposide decreased ribosomal S6 protein phosphorylation and increased histone H2AX phosphorylation and apoptosis. Tipifarnib plus etoposide is a promising orally bioavailable regimen that warrants further evaluation in elderly adults who are not candidates for conventional induction chemotherapy. These clinical studies are registered at www.clinicaltrials.gov as NCT00112853.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Baksh D et al. (AUG 2003)
Experimental hematology 31 8 723--32
Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion.
OVERVIEW: We show the existence of adult human mesenchymal progenitor cells (hMPCs) that can proliferate,in a cytokine-dependent manner,as individual cells in stirred suspension cultures (SSC) while maintaining their ability to form functional differentiated mesenchymal cell types. MATERIALS AND METHODS: Ficolled human bone marrow (BM)-derived cells were grown in SSC (and adherent controls) in the presence and absence of exogenously added cytokines. Phenotypic,gene expression,and functional assays for hematopoietic and nonhematopoietic cell populations were used to kinetically track cell production. Limiting-dilution analysis was used to relate culture-produced cells to input cell populations. RESULTS: Cytokine cocktail influenced total and progenitor cell expansion,as well as the types of cells generated upon plating. Flow cytometric analysis of CD117,CD123,and CD45 expression showed that cytokine supplementation influenced SSC output. The concomitant growth of CD45(+) and CD45(-) cells in the cultures that exhibited the greatest hMPC expansions suggests that the growth of these cells may benefit from interactions with hematopoietic cells. Functional assays demonstrated that the SSC-derived cells (input CFU-O number: 1990+/-377) grown in the presence of SCF+IL-3 resulted,after 21 days,in the generation of a significantly greater number (ptextless0.05) of bone progenitors (33,700+/-8763 CFU-O) than similarly initiated adherent cultures (214+/-75 CFU-O). RT-PCR analysis confirmed that the SSC-derived cells grown in osteogenic conditions express bone-specific genes (Cbfa1/Runx2,bone sialoprotein,and osteocalcin). CONCLUSIONS: Our approach not only provides an alternative strategy to expand adult BM-derived nonhematopoietic progenitor cell numbers in a scalable and controllable bioprocess,but also questions established biological paradigms concerning the properties of connective-tissue stem and progenitor cells.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Watabe T et al. (DEC 2003)
The Journal of cell biology 163 6 1303--11
TGF-beta receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells.
Recent findings have shown that embryonic vascular progenitor cells are capable of differentiating into mural and endothelial cells. However,the molecular mechanisms that regulate their differentiation,proliferation,and endothelial sheet formation remain to be elucidated. Here,we show that members of the transforming growth factor (TGF)-beta superfamily play important roles during differentiation of vascular progenitor cells derived from mouse embryonic stem cells (ESCs) and from 8.5-days postcoitum embryos. TGF-beta and activin inhibited proliferation and sheet formation of endothelial cells. Interestingly,SB-431542,a synthetic molecule that inhibits the kinases of receptors for TGF-beta and activin,facilitated proliferation and sheet formation of ESC-derived endothelial cells. Moreover,SB-431542 up-regulated the expression of claudin-5,an endothelial specific component of tight junctions. These results suggest that endogenous TGF-beta/activin signals play important roles in regulating vascular growth and permeability.
View Publication
产品类型:
产品号#:
72232
72234
产品名:
SB431542(水合物)
SB431542(水合物)
文献
Reddy K et al. (JUN 2008)
Molecular cancer research : MCR 6 6 929--36
Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing's tumor vessels.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However,whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model,we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-),CD34+/CD45+,and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+,Sca1(-)/Gr1+,VEGFR1+,and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial,pericyte,or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors,colocalized with the tumor vascular network,and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast,human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis.
View Publication
产品类型:
产品号#:
02690
09600
09650
产品名:
StemSpan™CC100
StemSpan™ SFEM
StemSpan™ SFEM
文献
Mandegar MA et al. (AUG 2011)
Human Molecular Genetics 20 15 2905--13
Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells
We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC),which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore,and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines,but never in stem cells,thus limiting their potential therapeutic application. In this work,we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency,which were stably maintained without selection for 3 months. Importantly,no integration of the HAC DNA was observed in the hESc lines,compared with the fibrosarcoma-derived control cells,where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency,differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc,and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Torrano V et al. (NOV 2011)
Blood 118 18 4910--8
ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor.
ETV6-RUNX1 gene fusion is usually an early,prenatal event in childhood acute lymphoblastic leukemia (ALL). Transformation results in the generation of a persistent (> 14 years) preleukemic clone,which postnatally converts to ALL after the acquisition of necessary secondary genetic alterations. Many cancer cells show some expression of the erythropoietin receptor (EPOR) gene,although the functionality" of any EPOR complexes and their relevant signaling pathways in nonerythroid cells has not been validated. EPOR mRNA is selectively and ectopically expressed in ETV6-RUNX1(+) ALL but the presence of a functional EPOR on the cell surface and its role in leukemogenesis driven by ETV6-RUNX1 remains to be identified. Here we show that ETV6-RUNX1 directly binds the EPOR promoter and that expression of ETV6-RUNX1 alone in normal pre-B cells is sufficient to activate EPOR transcription. We further reveal that murine and human ETV6-RUNX1(+) cells expressing EPOR mRNA have EPO ligand binding activity that correlates with an increased cell survival through activation of the JAK2-STAT5 pathway and up-regulation of antiapoptotic BCL-XL. These data support the contention that ETV6-RUNX1 directly activates ectopic expression of a functional EPOR and provides cell survival signals that may contribute critically to persistence of covert premalignant clones in children.
View Publication
产品类型:
产品号#:
70007
70007.1
70007.2
产品名:
冻存的人脐带血单核细胞
冻存的人脐带血单核细胞
冻存的人脐带血单核细胞
文献
Liu Y et al. (APR 2012)
Stem cells and development 21 6 829--33
Tip110 maintains expression of pluripotent factors in and pluripotency of human embryonic stem cells.
HIV-1 Tat-interacting protein of 110 kDa [Tip110; p110(nrb)/SART3/p110] is an RNA binding nuclear protein implicated in regulation of HIV-1 gene and host gene transcription,pre-mRNA splicing,and cancer immunology. Recently,we demonstrated a role for Tip110 in regulation of hematopoiesis. Here,we show that TIP110 is also expressed in human embryonic stem cells (hESCs) and expression was decreased with differentiation of these ESCs. TIP110 was found,through up- and down-modulation of expression of Tip110,to be important in maintaining pluripotent factor (NANOG,OCT4,and SOX2) expression in and pluripotency of hESCs,although the mechanisms involved and whether the Tip110 effects are direct remain to be determined.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Panyutin IGIV et al. (DEC 2012)
International Journal of Radiation Biology 88 12 954--60
Effect of 5-[(125)I]iodo-2'-deoxyuridine uptake on the proliferation and pluripotency of human embryonic stem cells.
PURPOSE: Human embryonic stem cells (hESC) hold a great potential for regenerative medicine because,in principle,they can differentiate into any cell type found in the human body. In addition,studying the effect of ionizing radiation (IR) on hESC may provide valuable information about the response of human cells to IR exposure in their most naive state,as well as the consequences of IR exposure on the development of organisms. However,the effect of IR,in particular radionuclide uptake,on the pluripotency,proliferation and survival of hESC has not been extensively studied. METHODS: In this study we treated cultured hESC with 5-[(125)I]iodo-2'-deoxyuridine ((125)IdU),a precursor of DNA synthesis. Then we measured the expansion of colonies and expression of pluripotency markers in hESC. RESULTS: We found that uptake of (125)IdU was similar in both hESC and HT1080 human fibrosarcoma cells. However,treatment with 0.1 μCi/ml (125)IdU for 24 hours resulted in complete death of the hESC population; whereas HT1080 cancer cells continued to grow. Treatment with a 10-fold lower dose (125)IdU (0.01 μCi/ml) resulted in colonies of hESC becoming less defined with numerous cells growing in monolayer outside of the colonies showing signs of differentiation. Then we analyzed the expression of pluripotency markers (octamer-binding transcription factor 4 [Oct-4] and stage-specific embryonic antigen-4 [SSEA4]) in the surviving hESC. We found that hESC in the surviving colonies expressed pluripotency markers at levels comparable with those in the non-treated controls. CONCLUSIONS: Our results provide important initial insights into the sensitivity of hESC to IR,and especially that produced by the decay of an internalized radionuclide.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Easley CA et al. (JUN 2012)
Cellular reprogramming 14 3 193--203
Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.
Cellular reprogramming from adult somatic cells into an embryonic cell-like state,termed induced pluripotency,has been achieved in several cell types. However,the ability to reprogram human amniotic epithelial cells (hAECs),an abundant cell source derived from discarded placental tissue,has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs),but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore,AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation,including NEUROD1 and SOX17,markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs,we analyzed global DNA methylation,global histone acetylation,and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts,hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise,quantitative gene expression analyses show that hAECs endogenously express OCT4,SOX2,KLF4,and c-MYC,all four factors used in cellular reprogramming. Thus,hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Chambers SM et al. (JUL 2012)
Nature biotechnology 30 7 715--20
Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors.
Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types,including neurons. However,differentiation of hPSCs with extrinsic factors is a slow,step-wise process,mimicking the protracted timing of human development. Using a small-molecule screen,we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at textgreater75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors,including tetrodotoxin (TTX)-resistant,SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development,suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain.
View Publication
产品类型:
产品号#:
72082
72232
72234
85850
85857
产品名:
DAPT
SB431542(水合物)
SB431542(水合物)
mTeSR™1
mTeSR™1
文献
Meganathan K et al. (AUG 2012)
PloS one 7 8 e44228
Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.
Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value,thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity,only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2,PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb,heart and embryonic development related transcription factors and biological processes. Moreover,this study uncovered novel possible mechanisms,such as the inhibition of RANBP1,that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1,GSTA2),that protect the cell from secondary oxidative stress. As a proof of principle,we demonstrated that a combination of transcriptomics and proteomics,along with consistent differentiation of hESCs,enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ozair MZ et al. (JAN 2013)
STEM CELLS 31 1 35--47
SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism
Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However,dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here,we show that SMAD7,a cell-intrinsic inhibitor of transforming growth factor-β (TGFβ) signaling,is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time course gene expression revealed downregulation of MAPK components,and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. Fibroblast growth factor-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues,pluripotent cells simply revert to a program of neural conversion. Hence,the primed" state of hESCs requires inhibition of the "default" state of neural fate acquisition. This has parallels in amphibians�
View Publication