Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow switch" cultures."
In this report,we describe a modification of the assay for long-term culture-initiating cells (LTC-IC) that allows a subset of murine LTC-IC (designated as LTC-ICML) to express both their myeloid (M) and lymphoid (L) differentiative potentials in vitro. The modified assay involves culturing test cells at limiting dilutions on irradiated mouse marrow feeder layers for an initial 4 weeks under conditions that support myelopoiesis and then for an additional week under conditions permissive for B-lymphopoiesis. All of the clonogenic pre-B progenitors (colony-forming unit [CFU] pre-B) detected in such postswitch LTC appear to be the progeny of uncommitted cells present in the original cell suspension because exposure of lymphoid-restricted progenitors to myeloid LTC conditions for textgreater or = 7 days was found to irreversibly terminate CFU-pre-B production and,in cultures initiated with limiting numbers of input cells (no progenitors of any type detected in textgreater 70% of cultures 1 week after the switch),the presence of CFU-pre-B was tightly associated with the presence of myeloid clonogenic cells,regardless of the purity of the input population. Limiting dilution analysis of the proportion of negative cultures measured for different numbers of input cells showed the frequency of LTC-ICML in normal adult mouse marrow to be 1 per 5 x 10(5) cells with an enrichment of approximately 500-fold in the Sca-1+ Lin-WGA+ fraction,as was also found for competitive in vivo repopulating units (CRU) and conventionally defined LTC-IC. LTC-ICML also exhibited the same resistance to treatment in vivo with 5-fluorouracil (5-FU) as CRU and LTC-IC,thereby distinguishing these three populations from the great majority of both in vitro clonogenic cells and day 12 CFU-S. The ability to quantitate cells with dual lymphoid and myeloid differentiation potentials in vitro,without the need for their prior purification,should facilitate studies of totipotent hematopoietic stem cell regulation.
View Publication
产品类型:
产品号#:
03534
03630
03134
03231
03234
03334
03434
03444
05350
03236
产品名:
MethoCult™GF M3534
MethoCult™M3630
MethoCult™M3134
MethoCult™M3231
MethoCult™M3234
MethoCult™M3334
MethoCult™GF M3434
MethoCult™GF M3434
MethoCult™SF M3236
Tata PR et al. (NOV 2013)
Nature 503 7475 218--23
Dedifferentiation of committed epithelial cells into stem cells in vivo.
Cellular plasticity contributes to the regenerative capacity of plants,invertebrates,teleost fishes and amphibians. In vertebrates,differentiated cells are known to revert into replicating progenitors,but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells,we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast,direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming,the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states,notably cancer.
View Publication
Ramgolam VS et al. (OCT 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 8 5418--27
IFN-beta inhibits human Th17 cell differentiation.
IFN-beta-1a has been used over the past 15 years as a primary therapy for relapsing-remitting multiple sclerosis (MS). However,the immunomodulatory mechanisms that provide a therapeutic effect against this CNS inflammatory disease are not yet completely elucidated. The effect of IFN-beta-1a on Th17 cells,which play a critical role in the development of the autoimmune response,has not been extensively studied in humans. We have investigated the effect of IFN-beta-1a on dendritic cells (DCs) and naive CD4(+)CD45RA(+) T cells derived from untreated MS patients and healthy controls in the context of Th17 cell differentiation. We report that IFN-beta-1a treatment down-regulated the expression of IL-1beta and IL-23p19 in DCs,whereas it induced the gene expression of IL-12p35 and IL-27p28. We propose that IFN-beta-1a-mediated up-regulation of the suppressor of cytokine signaling 3 expression,induced via STAT3 phosphorylation,mediates IL-1beta and IL-23 down-regulation,while IFN-beta-1a-induced STAT1 phosphorylation induces IL-27p28 expression. CD4(+)CD45RA(+) naive T cells cocultured with supernatants from IFN-beta-1a-treated DCs exhibited decreased gene expression of the Th17 cell markers retinoic acid-related orphan nuclear hormone receptor c (RORc),IL-17A,and IL-23R. A direct IFN-beta-1a treatment of CD45RA(+) T cells cultured in Th17-polarizing conditions also down-regulated RORc,IL-17A,and IL-23R,but up-regulated IL-10 gene expression. Studies of the mechanisms involved in the Th17 cell differentiation suggest that IFN-beta-1a inhibits IL-17 and induces IL-10 secretion via activated STAT1 and STAT3,respectively. IFN-beta's suppression of Th17 cell differentiation may represent its most relevant mechanism of selective suppression of the autoimmune response in MS.
View Publication