Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.
Human pluripotent stem cells (hPSCs),including human embryonic stem cells and human-induced pluripotent stem cells,are a renewable cell source for a wide range of applications in regenerative medicine and useful tools for human disease modeling and drug discovery. For these purposes,large numbers of high-quality cells are essential. Recently,we showed that a biological substrate,recombinant E8 fragments of laminin isoforms,sustains long-term self-renewal of hPSCs in defined,xeno-free medium with dissociated single-cell passaging. Here,we describe a modified culture system with similar performance to efficiently expand hPSCs under defined,xeno-free conditions using a non-biological synthetic substrate.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vanuytsel K et al. (SEP 2014)
Stem Cell Research 13 2 240--250
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood,aside from numerous congenital abnormalities. FA mouse models have been generated; however,they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero,a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology,we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential,disruption of the second allele causes a severe growth disadvantage. As a result,heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele,quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning,this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. ?? 2014.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Liao J et al. (MAY 2015)
Nature Publishing Group 47 5 469--478
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.
Ignatius Irudayam J et al. (DEC 2015)
Data in Brief 5 871--878
Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells
Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5),hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type,the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors,coagulation factors,serum amyloid A and serpins. Furthermore,hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1,IL1R1,IL1RAP,IL2RG,IL6R,IL6ST and IL10RB. These cells also produced CCL14,CCL15,and CXCL- 1,2,3,16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors,CXCR4 and CXCR7,than that of hepatic cells. Sirtuin family of genes involved in aging,inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2,TRAF4,FADD,NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
A. R. Lefferts et al. ( 2022)
Frontiers in immunology 13 932393
Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint.
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA),a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint,we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium,also called intraepithelial lymphocytes (IELs),to distal sites including joint enthesis,the pathogenic site of SpA. Similar to patients with SpA,colon IELs from the TNF$\Delta$ARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNF$\Delta$ARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice,however in the TNF$\Delta$ARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNF$\Delta$ARE/+ donors into Rag1 -/- hosts,we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally,we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNF$\Delta$ARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration,contained fewer Il-17A and TNF competent CD4+ T cells,and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking,and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
View Publication
产品类型:
产品号#:
产品名:
T. B. Levring et al. (nov 2019)
Scientific reports 9 1 16725
Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells.
In addition to antigen-driven signals,T cells need co-stimulatory signals for robust activation. Several receptors,including members of the tumor necrosis factor receptor superfamily (TNFRSF),can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation,but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that na{\{i}}ve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation suggesting that damage-associated molecular patterns (DAMPs) such as endogenous TLR ligands released during DGC play a role in DGC-induced TXNIP down-regulation. Finally we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP."
View Publication
CelltypeR: A flow cytometry pipeline to characterize single cells from brain organoids
SummaryMotivated by the cellular heterogeneity in complex tissues,particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models,we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR,enabling dataset aligning,unsupervised clustering optimization,cell type annotating,and statistical comparisons. Applied to human iPSC derived midbrain organoids,it successfully identified the major brain cell types. We performed fluorescence-activated cell sorting of CelltypeR-defined astrocytes,radial glia,and neurons,exploring transcriptional states by single-cell RNA sequencing. Among the sorted neurons,we identified subgroups of dopamine neurons: one reminiscent of substantia nigra cells most vulnerable in Parkinson’s disease. Finally,we used our workflow to track cell types across a time course of organoid differentiation. Overall,our adaptable analysis framework provides a generalizable method for reproducibly identifying cell types across FC datasets in complex tissues. Graphical abstract Highlights•CelltypeR is a flow cytometry and computational pipeline for cell type quantification•Identified brain cell types in midbrain organoids and measured changes in proportions•Enriched selected populations using FACS and characterized by single-cell RNA sequencing•Identified substantia nigra–like dopaminergic neurons sensitive in Parkinson’s disease Neuroscience; Cell biology; Omics
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Aug 2025)
Nature Communications 16
Diminished immune cell adhesion in hypoimmune ICAM-1 knockout human pluripotent stem cells
Gene edited human pluripotent stem cells are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive immune responses,but have largely not addressed the innate immune cells,such as neutrophils,that mediate inflammation and rejection processes occurring early after graft transplantation. We identify the adhesion molecule ICAM-1 as a hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In our experiments,we find that ICAM-1 blocking or knockout in human pluripotent stem cell-derived cardiovascular therapies imparts significantly diminished binding of multiple immune cell types. ICAM-1 knockout results in diminished T cell proliferation and activation responses in vitro and in longer in vivo retention/protection of knockout grafts following immune cell encounter in NeoThy humanized mice. We also introduce the ICAM-1 knockout edit into existing first-generation hypoimmune human pluripotent stem cells and prevent immune cell binding. This promising hypoimmune editing strategy has the potential to improve transplantation outcomes for regenerative therapies in the setting of cardiovascular pathologies and several other diseases. Hypoimmune gene editing in human pluripotent stem cells (hPSCs) provides a promising platform for cellular therapies. Here,the authors report that CRISPR mediated deletion of ICAM-1 in hPSC-derived grafts reduces immune cell adhesion,dampens T cell activation,and protects against immune rejection.
View Publication
产品类型:
产品号#:
08005
100-0956
19666
100-0404
18000
18002
产品名:
STEMdiff™ 内皮分化试剂盒
ImmunoCult™ XF培养基
EasySep™ Direct人中性粒细胞分选试剂盒
RoboSep™ 人中性粒细胞分选试剂盒
EasySep™磁极
Easy50 EasySep™磁极
J. Lee et al. (may 2020)
Biochemical and biophysical research communications 525 3 563--569
Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells.
Supercentenarians (≥110-year-old,SC) are a uniquely informative population not only because they surpass centenarians in age,but because they appear to age more slowly with fewer incidences of chronic age-related disease than centenarians. We reprogramed donor B-lymphoblastoid cell lines (LCL) derived from a 114-year-old (SC),a 43-year-old healthy disease-free control (HDC) and an 8-year-old with a rapid aging disease (Hutchinson-Gilford progeria syndrome (HGPS)) and compared SC-iPSC to HDC-iPSC and HGPS-iPSCs. Reprogramming to pluripotency was confirmed by pluripotency marker expression and differentiation to 3 germ-layers. Each iPSC clone differentiated efficiently to mesenchymal progenitor cells (MPC) as determined by surface marker expression and RNAseq analysis. We identified supercentenarian and HGPS associated gene expression patterns in the differentiated MPC lines that were not evident in the parental iPSC lines. Importantly,telomere length resetting occurred in iPSC from all donors albeit at a lower incidence in supercentenarian iPSCs. These data indicate the potential to use reprogramming to reset both developmental state and cellular age in the oldest of the old." We anticipate that supercentenarian iPSC and their differentiated derivatives will be valuable tools for studying the underlying mechanisms of extreme longevity and disease resistance."
View Publication
产品类型:
产品号#:
05240
产品名:
STEMdiff™ 间充质祖细胞试剂盒
S. Schuster et al. (mar 2015)
Biochemical and biophysical research communications 458 2 334--40
FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells.
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently,NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here,we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. RESULTS FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells,Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN),the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPK$\alpha$ activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPK$\alpha$ and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. CONCLUSION Taken together,these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC.
View Publication
产品类型:
产品号#:
产品名:
Mou H et al. ( 2016)
Stem Cell 19 4 217--231
Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells cell stem cell dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells.
Graphical Abstract Highlights d SMAD activity is active in suprabasal cells but is weaker in basal epithelial cells d SMAD signaling activity correlates with mucociliary differentiation in the airway d Dual TGFb/BMP inhibition prevents spontaneous differentiation in culture d Dual TGFb/BMP inhibition allows prolonged culture of diverse epithelial basal cells Correspondence jrajagopal@partners.org In Brief Mou et al. show that small-molecule-mediated SMAD signaling inhibition allows prolonged feeder-free culture of diverse functional epithelial basal stem cells in a 2D format. This methodology provides a facile patient-specific epithelial disease modeling platform,as shown by the expansion of airway epithelium from non-invasively obtained specimens from cystic fibrosis patients.
View Publication