Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex.
The platelet glycoprotein Ib-IX-V complex (GPIb-IX-IV) is the receptor for VWF and is responsible for VWF-mediated platelet activation and aggregation. Loss of the GPIb-IX-V complex is pathogenic for Bernard-soulier Syndrome (BSS),which is characterized by macrothrombocytopenia and impaired platelet function. It remains unclear how the GPIb-IX-V complex is assembled and whether there is a role for a specific molecular chaperone in the process. In the present study,we report that the assembly of the GPIb-IX-V complex depends critically on a molecular chaperone in the endoplasmic reticulum (ER): gp96 (also known as grp94 and HSP90b1). gp96/grp94 deletion in the murine hematopoietic system results in thrombocytopenia,prolonged bleeding time,and giant platelets that are clinically indistinguishable from human BSS. Loss of gp96/grp94 in vivo and in vitro leads to the concomitant reduction in GPIb-IX complex expression due to ER-associated degradation. We further demonstrate that gp96/grp94 binds selectively to the GPIX subunit,but not to gpIbα or gpIbβ. Therefore,we identify the platelet GPIX subunit of the GPIb-IX-V complex as an obligate and novel client of gp96/grp94.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Haenebalcke L et al. (FEB 2013)
Cell reports 3 2 335--41
The ROSA26-iPSC mouse: a conditional, inducible, and exchangeable resource for studying cellular (De)differentiation.
Control of cellular (de)differentiation in a temporal,cell-specific,and exchangeable manner is of paramount importance in the field of reprogramming. Here,we have generated and characterized a mouse strain that allows iPSC generation through the Cre/loxP conditional and doxycycline/rtTA-controlled inducible expression of the OSKM reprogramming factors entirely from within the ROSA26 locus. After reprogramming,these factors can be replaced by genes of interest-for example,to enhance lineage-directed differentiation-with the use of a trap-coupled RMCE reaction. We show that,similar to ESCs,Dox-controlled expression of the cardiac transcriptional regulator Mesp1 together with Wnt inhibition enhances the generation of functional cardiomyocytes upon in vitro differentiation of such RMCE-retargeted iPSCs. This ROSA26-iPSC mouse model is therefore an excellent tool for studying both cellular reprogramming and lineage-directed differentiation factors from the same locus and will greatly facilitate the identification and ease of functional characterization of the genetic/epigenetic determinants involved in these complex processes.
View Publication
Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions
Advancements in human-engineered heart tissue have enhanced the understanding of cardiac cellular alteration. Nevertheless,a human model simulating pathological remodeling following myocardial infarction for therapeutic development remains essential. Here we develop an engineered model of myocardial repair that replicates the phased remodeling process,including hypoxic stress,fibrosis,and electrophysiological dysfunction. Transcriptomic analysis identifies nine critical signaling pathways related to cellular fate transitions,leading to the evaluation of seventeen modulators for their therapeutic potential in a mini-repair model. A scoring system quantitatively evaluates the restoration of abnormal electrophysiology,demonstrating that the phased combination of TGF? inhibitor SB431542,Rho kinase inhibitor Y27632,and WNT activator CHIR99021 yields enhanced functional restoration compared to single factor treatments in both engineered and mouse myocardial infarction model. This engineered heart tissue repair model effectively captures the phased remodeling following myocardial infarction,providing a crucial platform for discovering therapeutic targets for ischemic heart disease. Engineered human models of hearts are needed to study pathology and repair. Here,the authors develop a model which replicates the phased remodelling process. The model is then used to study signalling pathway modulators for their therapeutic potential in a mini-repair model.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Sep 2024)
American Journal of Human Genetics 111 10
ARID1A-BAF coordinates ZIC2 genomic occupancy for epithelial-to-mesenchymal transition in cranial neural crest specification
SummaryThe BAF chromatin remodeler regulates lineage commitment including cranial neural crest cell (CNCC) specification. Variants in BAF subunits cause Coffin-Siris syndrome (CSS),a congenital disorder characterized by coarse craniofacial features and intellectual disability. Approximately 50% of individuals with CSS harbor variants in one of the mutually exclusive BAF subunits,ARID1A/ARID1B. While Arid1a deletion in mouse neural crest causes severe craniofacial phenotypes,little is known about the role of ARID1A in CNCC specification. Using CSS-patient-derived ARID1A+/? induced pluripotent stem cells to model CNCC specification,we discovered that ARID1A-haploinsufficiency impairs epithelial-to-mesenchymal transition (EMT),a process necessary for CNCC delamination and migration from the neural tube. Furthermore,wild-type ARID1A-BAF regulates enhancers associated with EMT genes. ARID1A-BAF binding at these enhancers is impaired in heterozygotes while binding at promoters is unaffected. At the sequence level,these EMT enhancers contain binding motifs for ZIC2,and ZIC2 binding at these sites is ARID1A-dependent. When excluded from EMT enhancers,ZIC2 relocates to neuronal enhancers,triggering aberrant neuronal gene activation. In mice,deletion of Zic2 impairs NCC delamination,while ZIC2 overexpression in chick embryos at post-migratory neural crest stages elicits ectopic delamination from the neural tube. These findings reveal an essential ARID1A-ZIC2 axis essential for EMT and CNCC delamination. Graphical abstract ARID1A modulates chromatin accessibility at enhancers of genes required for epithelial-to-mesenchymal transition,a process essential for cranial neural crest cell (CNCC) specification. Haploinsufficiency of ARID1A attenuates ZIC2 binding at these enhancers,resulting in impaired CNCC formation with an aberrant neuronal trajectory. This study reveals an ARID1A-ZIC2 axis essential for CNCC specification.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
Kovarova M and Koller B (APR 2012)
Current protocols in immunology / edited by John E. Coligan ... [et al.] Chapter 22 Unit 22F.10.1--16
Differentiation of mast cells from embryonic stem cells.
In this unit,we describe a simple coculture-free method for obtaining mast cells from mouse and human embryonic stem (ES) cells. Much of our knowledge regarding the mechanisms by which mast cells are activated comes from studies of mouse bone marrow-derived mast cells. Studies of human mast cells have been hampered by the limited sources from which they can be cultured,the difficulty in introducing specific genetic changes into these cells,and differences between established cultures that reflect the unique genetic makeup of the tissue donor. Derivation of mast cells from embryonic stem cells addresses these limitations. ES-derived mast cells can be generated in numbers sufficient for studies of the pathways involved in mast cell effector functions. These ES cell-derived mast cells respond to antigens and other stimuli by releasing histamine,cytokines,lipids,and other bioactive mediators. The derivation of human mast cells from ES cells carrying mutations introduced by homologous recombination should provide a novel means of testing the function of genes in both the development and the effector functions of mast cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Fischbach NA et al. (FEB 2005)
Blood 105 4 1456--66
HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo.
The HOX family of homeobox genes plays an important role in normal and malignant hematopoiesis. Dysregulated HOX gene expression profoundly effects the proliferation and differentiation of hematopoietic stem cells (HSCs) and committed progenitors,and aberrant activation of HOX genes is a common event in human myeloid leukemia. HOXB6 is frequently overexpressed in human acute myeloid leukemia (AML). To gain further insight into the role of HOXB6 in hematopoiesis,we overexpressed HOXB6 in murine bone marrow using retrovirus-mediated gene transfer. We also explored structure-function relationships using mutant HOXB6 proteins unable to bind to DNA or a key HOX-binding partner,pre-B-cell leukemia transcription factor-1 (PBX1). Additionally,we investigated the potential cooperative interaction with myeloid ecotropic viral integration site 1 homolog (MEIS1). In vivo,HOXB6 expanded HSCs and myeloid precursors while inhibiting erythropoiesis and lymphopoiesis. Overexpression of HOXB6 resulted in AML with a median latency of 223 days. Coexpression of MEIS1 dramatically shortened the onset of AML. Cytogenetic analysis of a subset of HOXB6-induced AMLs revealed recurrent deletions of chromosome bands 2D-E4,a region frequently deleted in HOXA9-induced AMLs. In vitro,HOXB6 immortalized a factor-dependent myelomonocytic precursor capable of granulocytic and monocytic differentiation. These biologic effects of HOXB6 were largely dependent on DNA binding but independent of direct interaction with PBX1.
View Publication
Wang E et al. (AUG 1991)
The Journal of biological chemistry 266 22 14486--90
Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme.
Culture materials and grains contaminated with certain isolates of Fusarium moniliforme cause equine leucoencephalomalacia,porcine pulmonary edema syndrome,and liver cancer in rats. The causative agents are thought to be a family of compounds called fumonisins,which bear considerable structural similarity to the long-chain (sphingoid) base backbones of sphingolipids. Incubation of rat hepatocytes with fumonisins inhibited incorporation of [14C]serine into the sphingosine moiety of cellular sphingolipids with an IC50 of 0.1 microM for fumonisin B1. In contrast,fumonisin B1 increased the amount of the biosynthetic intermediate sphinganine,which suggests that fumonisins inhibit the conversion of [14C]sphinganine to N-acyl-[14C]sphinganines,a step that is thought to precede introduction of the 4,5-trans double bond of sphingosine (Merrill,A.H.,Jr. and Wang,E. (1986) J. Biol. Chem. 261,3764-3769). In agreement with this mechanism,fumonisin B1 inhibited the activity of sphingosine N-acyltransferase (ceramide synthase) in rat liver microsomes with 50% inhibition at approximately 0.1 microM and reduced the conversion of [3H]sphingosine to [3H]ceramide by intact hepatocytes. As far as we are aware,this is the first discovery of a naturally occurring inhibitor of this step of sphingolipid metabolism. These findings suggest that disruption of the de novo pathway of sphingolipid biosynthesis may be a critical event in the diseases that have been associated with consumption of fumonisins.
View Publication