(May 2024)
Journal for Immunotherapy of Cancer 12 5
Therapeutic Inducers of Natural Killer cell Killing (ThINKK): preclinical assessment of safety and efficacy in allogeneic hematopoietic stem cell transplant settings
BackgroundAllogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients,but cure rates are still dismal. To prevent leukemia relapse following HSCT,we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC,and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here,we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction.MethodsThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally,the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested.ResultsThe large majority of ThINKK shared the key characteristics of canonical blood pDC,including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some,although not all,markers of other dendritic cell populations. Importantly,while ThINKK were not killed by allogeneic T or NK cells,they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally,tacrolimus,sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity.ConclusionOur results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore,ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore,our data predict that the use of tacrolimus,sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively,these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.
View Publication
产品类型:
产品号#:
19359
19055
19051
100-0697
19359RF
19051RF
19055RF
产品名:
EasySep™人单核细胞分选试剂盒
EasySep™人NK细胞富集试剂盒
EasySep™人T细胞富集试剂盒
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Lei IL et al. (JAN 2015)
Journal of visualized experiments : JoVE January 52047. doi: 10.3791/52047.
Derivation of cardiac progenitor cells from embryonic stem cells.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes,smooth muscle cells (SMC),and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs,differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result,numerous strategies have been developed to derive CPCs from ESCs. In this protocol,differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs,ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus,CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen Y et al. (OCT 2007)
Blood 110 8 2889--98
Cited2 is required for normal hematopoiesis in the murine fetal liver.
Cited2 (cAMP-responsive elementbinding protein [CBP]/p300-interacting transactivators with glutamic acid [E] and aspartic acid [D]-rich tail 2) is a newly identified transcriptional modulator. Knockout of the Cited2 gene results in embryonic lethality with embryos manifesting heart and neural tube defects. Cited2-/- fetal liver displayed significant reduction in the numbers of Lin(-)c-Kit+Sca-1+ cells,Lin(-)c-Kit+ cells,and progenitor cells of different lineages. Fetal liver cells from Cited2-/- embryos gave rise to markedly reduced number of colonies in the colony-forming unit assay. Primary and secondary transplantation studies showed significantly compromised reconstitution of T-lymphoid,B-lymphoid,and myeloid lineages in mice that received a transplant of Cited2-/- fetal liver cells. Competitive reconstitution experiments further showed that fetal liver hematopoietic stem cell (HSC) function is severely impaired due to Cited2 deficiency. Microarray analysis showed decreased expression of Wnt5a and a panel of myeloid molecular markers such as PRTN3,MPO,Neutrophil elastase,Cathepsin G,and Eosinophil peroxidase in Cited2-/- fetal livers. Decreased expression of Bmi-1,Notch1,LEF-1,Mcl-1,and GATA2 was also observed in Cited2-/- Lin(-)c-Kit+ cells. The present study uncovers for the first time a novel role of Cited2 in the maintenance of hematopoietic homeostasis during embryogenesis and thus provides new insights into the molecular regulation of hematopoietic development.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Valamehr B et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 38 14459--64
Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies.
With their unique ability to differentiate into all cell types,embryonic stem (ES) cells hold great therapeutic promise. To improve the efficiency of embryoid body (EB)-mediated ES cell differentiation,we studied murine EBs on the basis of their size and found that EBs with an intermediate size (diameter 100-300 microm) are the most proliferative,hold the greatest differentiation potential,and have the lowest rate of cell death. In an attempt to promote the formation of this subpopulation,we surveyed several biocompatible substrates with different surface chemical parameters and identified a strong correlation between hydrophobicity and EB development. Using self-assembled monolayers of various lengths of alkanethiolates on gold substrates,we directly tested this correlation and found that surfaces that exhibit increasing hydrophobicity enrich for the intermediate-size EBs. When this approach was applied to the human ES cell system,similar phenomena were observed. Our data demonstrate that hydrophobic surfaces serve as a platform to deliver uniform EB populations and may significantly improve the efficiency of ES cell differentiation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Liu Y et al. (FEB 1992)
The Journal of experimental medicine 175 2 437--45
Heat-stable antigen is a costimulatory molecule for CD4 T cell growth.
Optimal induction of clonal expansion by normal CD4 T cells requires a ligand that can engage the T cell receptor as well as functionally defined costimulatory activity on the same antigen-presenting cell surface. While the presence of effective costimulation induces proliferation,T cell receptor ligation in its absence renders T cells inactive or anergic. The molecular basis of this costimulatory activity remains to be defined. Here we describe a monoclonal antibody that can block the costimulatory activity of splenic accessory cells. Treatment with this antibody not only blocks the proliferation of CD4 T cells to a T cell receptor ligand,but also induces T cell nonresponsiveness to subsequent stimulation. Sequence analysis of the antigen recognized by this antibody indicates that it recognizes a protein that is identical to heat-stable antigen. Gene transfer experiments directly demonstrate that this protein has costimulatory activity. Thus,heat-stable antigen meets the criteria for a costimulator of T cell clonal expansion.
View Publication
产品类型:
产品号#:
01434
产品名:
Li Z et al. (MAR 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 13 5004--9
Simple piggyBac transposon-based mammalian cell expression system for inducible protein production.
Reported here is a piggyBac transposon-based expression system for the generation of doxycycline-inducible,stably transfected mammalian cell cultures for large-scale protein production. The system works with commonly used adherent and suspension-adapted mammalian cell lines and requires only a single transfection step. Moreover,the high uniform expression levels observed among clones allow for the use of stable bulk cell cultures,thereby eliminating time-consuming cloning steps. Under continuous doxycycline induction,protein expression levels have been shown to be stable for at least 2 mo in the absence of drug selection. The high efficiency of the system also allows for the generation of stable bulk cell cultures in 96-well format,a capability leading to the possibility of generating stable cell cultures for entire families of membrane or secreted proteins. Finally,we demonstrate the utility of the system through the large-scale production (140-750 mg scale) of an endoplasmic reticulum-resident fucosyltransferase and two potential anticancer protein therapeutic agents.
View Publication
M. R. Hildebrandt et al. (dec 2019)
Stem cell reports 13 6 1126--1141
Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation.
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons,cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids,T lymphocytes,and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly,nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac,neurological,or other disease associations. Overall,PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling,and variant-preferred healthy control lines were identified for specific disease settings.
View Publication
(Jul 2025)
Frontiers in Bioengineering and Biotechnology 13 12
360° size-adjustable microelectrode array system for electrophysiological monitoring of cerebral organoids
This paper presents a 360°,size-adjustable microelectrode array (MEA) system for the long-term electrophysiological monitoring of cerebral organoids derived from human pluripotent stem cells. The system consists of eight independently positionable multielectrode probes,each carrying eight electrodes arranged vertically. This configuration resulted in 64 recording channels surrounding the organoid. The multielectrode probes were mounted on custom-designed miniature manipulators with three degrees of freedom. This setup enabled positioning and contact with organoids of varying sizes (approximately 1–3.7 mm in diameter). The design allowed circumferential access and facilitated standard incubator-based cultivation without disrupting the recording setup. Fabricated using flexible printed circuit technology,this MEA system offers relatively low production costs. It is also amenable to widespread implementation in laboratory settings. Experimental results demonstrated the successful recording of neuronal activity,including spike detection and signal stability,over 2 weeks of continuous organoid culture. These results suggests that the three-dimensional system provides broad spatial coverage and supports long-term monitoring for basic biomedical research. It also holds potential for future applications such as biohybrid computing.
View Publication
产品类型:
产品号#:
08570
100-0483
100-0484
100-0276
100-1130
产品名:
STEMdiff™ 脑类器官试剂盒
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(May 2024)
Nature Communications 15
Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data
The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases,thereby facilitating the identification of alternative splicing events and isoform expressions. Recently,numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless,there remains a deficiency in comparative studies that systemically evaluate the performance of these tools,which are implemented with different algorithms,under various simulations that encompass potential influencing factors. In this study,we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data,which represented diverse sequencing platforms generated by an in-house simulator,RNA sequins (sequencing spike-ins) data,as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS,with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data. Recently,various computational tools have emerged for detecting mRNA isoforms using long-read sequencing data. Here,the authors systemically evaluate and compare the performance of these tools.
View Publication