Bouchi R et al. (JAN 2014)
Nature communications 5 4242
FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.
Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors,we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive,insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells,we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells,release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
View Publication
A. Borek-Dorosz et al. (nov 2022)
Journal of advanced research 41 191--203
Raman-based spectrophenotyping of the most important cells of the immune system.
INTRODUCTION Human peripheral blood mononuclear cells (PBMCs) are a heterogeneous population of cells that includes T and B lymphocytes. The total number of lymphocytes and their percentage in the blood can be a marker for the diagnosis of several human diseases. Currently,cytometric methods are widely used to distinguish subtypes of leukocytes and quantify their number. These techniques use cell immunophenotyping,which is limited by the number of fluorochrome-labeled antibodies that can be applied simultaneously. OBJECTIVE B and T lymphocytes were isolated from peripheral blood obtained from healthy human donors. METHODS The immunomagnetic negative selection was used for the enrichment of B and T cells fractions,and their purity was assessed by flow cytometry. Isolated cells were fixed with 0.5% glutaraldehyde and measured using confocal Raman imaging. K-means cluster analysis,principal component analysis and partial least squares discriminant methods were applied for the identification of spectroscopic markers to distinguish B and T cells. HPLC was the reference method for identifying carotene in T cells. RESULTS Reliable discrimination between T and B lymphocytes based on their spectral profile has been demonstrated using label-free Raman imaging and chemometric analysis. The presence of carotene in T lymphocytes (in addition to the previously reported in plasma) was confirmed and for the first time unequivocally identified as $\beta$-carotene. In addition,the molecular features of the lymphocytes nuclei were found to support the discriminant analysis. It has been shown that although the presence of carotenoids in T cells depends on individual donor variability,the reliable differentiation between lymphocytes is possible based on Raman spectra collected from individual cells. CONCLUSIONS This proves the potential of Raman spectroscopy in clinical diagnostics to automatically differentiate between cells that are an important component of our immune system.
View Publication
Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here,to understand the pathological mechanisms of Kd,we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis,astrogenesis,and oligodendrogenesis but manifest early myelination defects. Specifically,Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly,myelin is affected in the absence of autophagy and mTOR pathway dysregulation,suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions,Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding,Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether,this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
K. R. Moss et al. (Apr 2024)
iScience 27 6
hESC- and hiPSC-derived Schwann cells are molecularly comparable and functionally equivalent
Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains controversial,we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived Schwann cells generated with our previously reported protocol. We identified only modest transcriptome differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally,both cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol are molecularly comparable and functionally equivalent. Subject areas: Neuroscience,Cell biology,Stem cells research,Transcriptomics
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
J. Slamecka et al. (Sep 2024)
iScience 27 10
Highly efficient generation of self-renewing trophoblast from human pluripotent stem cells
Human pluripotent stem cells (hPSCs) represent a powerful model system to study early developmental processes. However,lineage specification into trophectoderm (TE) and trophoblast (TB) differentiation remains poorly understood,and access to well-characterized placental cells for biomedical research is limited,largely depending on fetal tissues or cancer cell lines. Here,we developed novel strategies enabling highly efficient TE specification that generates cytotrophoblast (CTB) and multinucleated syncytiotrophoblast (STB),followed by the establishment of trophoblast stem cells (TSCs) capable of differentiating into extravillous trophoblast (EVT) and STB after long-term expansion. We confirmed stepwise and controlled induction of lineage- and cell-type-specific genes consistent with developmental biology principles and benchmarked typical features of placental cells using morphological,biochemical,genomics,epigenomics,and single-cell analyses. Charting a well-defined roadmap from hPSCs to distinct placental phenotypes provides invaluable opportunities for studying early human development,infertility,and pregnancy-associated diseases. Subject areas: Natural sciences,Biological sciences,Cell biology,Stem cells research
View Publication
产品类型:
产品号#:
05110
05220
05221
产品名:
STEMdiff™定型内胚层检测试剂盒
STEMdiff™ 中胚层诱导培养基
STEMdiff™ 中胚层诱导培养基
T. Hideshima et al. (apr 2020)
Leukemia
Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways.
Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide show remarkable antitumor activity in multiple myeloma (MM) via directly inhibiting MM-cell growth in the bone marrow (BM) microenvironment and promoting immune effector cell function. They are known to bind to the ubiquitin 3 ligase CRBN complex and thereby triggering degradation of IKZF1/3. In this study,we demonstrate that IMiDs also directly bind and activate zeta-chain-associated protein kinase-70 (Zap-70) via its tyrosine residue phosphorylation in T cells. IMiDs also triggered phosphorylation of Zap-70 in natural killer (NK) cells. Importantly,increased granzyme-B (GZM-B) expression and NK-cell activity triggered by IMiDs is associated with Zap-70 activation and inhibited by Zap-70 knockdown (KD),independent of CRBN. We also demonstrate a second mechanism whereby IMiDs trigger GZM-B and NK cytotoxicity which is CRBN and IKZF3 mediated,and inhibited or enhanced by KD of CRBN or IKZF3,respectively,independent of Zap-70. Our studies therefore show that IMiDs can enhance NK and T-cell cytotoxicity in (1) ZAP-70-mediated CRBN independent,as well as (2) CRBN-mediated ZAP-70 independent mechanisms; and provide the framework for developing novel therapeutics to activate Zap-70 and thereby enhance T and NK anti-MM cytotoxicity.
View Publication
产品类型:
产品号#:
产品名:
J. S. Lewis-Wambi et al. ( 2008)
Breast cancer research : BCR 10 6 R104
Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis.
INTRODUCTION Estrogen deprivation using aromatase inhibitors is one of the standard treatments for postmenopausal women with estrogen receptor (ER)-positive breast cancer. However,one of the consequences of prolonged estrogen suppression is acquired drug resistance. Our group is interested in studying antihormone resistance and has previously reported the development of an estrogen deprived human breast cancer cell line,MCF-7:5C,which undergoes apoptosis in the presence of estradiol. In contrast,another estrogen deprived cell line,MCF-7:2A,appears to have elevated levels of glutathione (GSH) and is resistant to estradiol-induced apoptosis. In the present study,we evaluated whether buthionine sulfoximine (BSO),a potent inhibitor of glutathione (GSH) synthesis,is capable of sensitizing antihormone resistant MCF-7:2A cells to estradiol-induced apoptosis. METHODS Estrogen deprived MCF-7:2A cells were treated with 1 nM 17beta-estradiol (E2),100 microM BSO,or 1 nM E2 + 100 microM BSO combination in vitro,and the effects of these agents on cell growth and apoptosis were evaluated by DNA quantitation assay and annexin V and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. The in vitro results of the MCF-7:2A cell line were further confirmed in vivo in a mouse xenograft model. RESULTS Exposure of MCF-7:2A cells to 1 nM E2 plus 100 microM BSO combination for 48 to 96 h produced a sevenfold increase in apoptosis whereas the individual treatments had no significant effect on growth. Induction of apoptosis by the combination treatment of E2 plus BSO was evidenced by changes in Bcl-2 and Bax expression. The combination treatment also markedly increased phosphorylated c-Jun N-terminal kinase (JNK) levels in MCF-7:2A cells and blockade of the JNK pathway attenuated the apoptotic effect of E2 plus BSO. Our in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of BSO either as a single agent or in combination with E2 significantly reduced tumor growth of MCF-7:2A cells. CONCLUSIONS Our data indicates that GSH participates in retarding apoptosis in antihormone-resistant human breast cancer cells and that depletion of this molecule by BSO may be critical in predisposing resistant cells to E2-induced apoptotic cell death. We suggest that these data may form the basis of improving therapeutic strategies for the treatment of antihormone resistant ER-positive breast cancer.
View Publication
产品类型:
产品号#:
100-0560
产品名:
L -丁硫氨酸-(S,R)-亚砜亚胺
E. V. Vinogradova et al. (aug 2020)
Cell 182 4 1009--1026.e29
An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however,our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here,we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins,including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.
View Publication
产品类型:
产品号#:
17951
100-0695
17951RF
产品名:
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
Z. Yan and P. M. Hinkle (sep 1993)
The Journal of biological chemistry 268 27 20179--84
Saturable, stereospecific transport of 3,5,3'-triiodo-L-thyronine and L-thyroxine into GH4C1 pituitary cells.
The mechanism of uptake of the thyroid hormones,3,5,3'-triiodo-L-thyronine (L-T3) and L-thyroxine (L-T4),was studied in rat pituitary GH4C1 cells. The major portion (approximately 65{\%}) of L-T3 transport was stereospecific and saturable. Transport of L-T3 was 8-10 times more rapid than transport of D-T3. [125I]L-T3 transport was saturable at microM concentrations; a Lineweaver-Burk plot was linear with Km = 0.4 microM and Vmax = 4 pmol/min/10(6) cells. Unlabeled analogs competed with [125I]L-T3 uptake in the order L-T3 {\textgreater} or = L-T4 {\textgreater} 3,3',5'-triiodo-L-thyronine (reverse-T3),D-T3,D-T4,and L-thyronine. L-T3 and L-T4 also both effectively inhibited [125I]L-T4 transport. Uptake of [125I]L-T3 was inhibited 40-55{\%} by large neutral amino acids and 77{\%} by 80 microM beta-2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid,an inhibitor selective for the L system of amino acid uptake. Conversely,L-T3 inhibited the transport of [3H]leucine by pituitary cells (IC50 = 2 microM),but D-T3 and 3,5,3'-triiodothyroacetic acid (Triac) did not. L-Leucine was transported much more efficiently (Vmax = 0.65 mumol/min/10(6) cells) than L-T3 by GH4C1 cells. The results show that L-T3 and L-T4 share the same stereospecific transport pathway in pituitary cells,that the transport mechanism is saturable at supraphysiological thyroid hormone concentrations,and that the L system is partially responsible for L-T3 transport.
View Publication