CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration.
Hematopoietic progenitor cell trafficking is an important phenomenon throughout life. It is thought to occur in sequential steps,similar to what has been described for mature leukocytes. Molecular actors have been identified for each step of leukocyte migration; recently,CD99 was shown to play a part during transendothelial migration. We explored the expression and role of CD99 on human hematopoietic progenitors. We demonstrate that (1) CD34+ cells express CD99,albeit with various intensities; (2) subsets of CD34+ cells with high or low levels of CD99 expression produce different numbers of erythroid,natural killer (NK),or dendritic cells in the in vitro differentiation assays; (3) the level of CD99 expression is related to the ability to differentiate toward B cells; (4) CD34+ cells that migrate through an endothelial monolayer in response to SDF-1alpha and SCF display the highest level of CD99 expression; (5) binding of a neutralizing antibody to CD99 partially inhibits transendothelial migration of CD34+ progenitors in an in vitro assay; and (6) binding of a neutralizing antibody to CD99 reduces homing of CD34+ progenitors xenotransplanted in NOD-SCID mice. We conclude that expression of CD99 on human CD34+ progenitors has functional significance and that CD99 may be involved in transendothelial migration of progenitors.
View Publication
产品类型:
产品号#:
01700
01705
04230
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
MethoCult™H4230
文献
Logie L et al. ( 2007)
Diabetes 56 9 2218--2227
Characterization of a protein kinase B inhibitor in vitro and in insulin-treated liver cells.
OBJECTIVE: Abnormal expression of the hepatic gluconeogenic genes (glucose-6-phosphatase [G6Pase] and PEPCK) contributes to hyperglycemia. These genes are repressed by insulin,but this process is defective in diabetic subjects. Protein kinase B (PKB) is implicated in this action of insulin. An inhibitor of PKB,Akt inhibitor (Akti)-1/2,was recently reported; however,the specificity and efficacy against insulin-induced PKB was not reported. Our aim was to characterize the specificity and efficacy of Akti-1/2 in cells exposed to insulin and then establish whether inhibition of PKB is sufficient to prevent regulation of hepatic gene expression by insulin. RESEARCH DESIGN AND METHODS: Akti-1/2 was assayed against 70 kinases in vitro and its ability to block PKB activation in cells exposed to insulin fully characterized. RESULTS: Akti-1/2 exhibits high selectivity toward PKBalpha and PKBbeta. Complete inhibition of PKB activity is achieved in liver cells incubated with 1-10 mumol/l Akti-1/2,and this blocks insulin regulation of PEPCK and G6Pase expression. Our data demonstrate that only 5-10% of maximal insulin-induced PKB is required to fully repress PEPCK and G6Pase expression. Finally,we demonstrate reduced insulin sensitivity of these gene promoters in cells exposed to submaximal concentrations of Akti-1/2; however,full repression of the genes can still be achieved by high concentrations of insulin. CONCLUSIONS: This work establishes the requirement for PKB activity in the insulin regulation of PEPCK,G6Pase,and a third insulin-regulated gene,IGF-binding protein-1 (IGFBP1); suggests a high degree of functional reserve; and identifies Akti-1/2 as a useful tool to delineate PKB function in the liver.
View Publication
产品类型:
产品号#:
72942
72944
产品名:
AKT抑制剂VIII
AKT抑制剂VIII
文献
Sarto P et al. (NOV 2007)
Journal of cardiac failure 13 9 701--8
Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure.
BACKGROUND: The enhancement of circulating endothelial progenitor cells (EPCs) obtained by exercise training can be beneficial to patients with cardiac disease. Changes in the levels and differentiation of CD34(pos)/KDR(pos) EPCs,as well as the plasma concentration of vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1 EPC-mobilizing cytokines,were evaluated in patients with chronic heart failure after 8 weeks of supervised aerobic training (SAT) and 8 weeks of subsequent discontinued SAT (DSAT). METHODS AND RESULTS: The levels of circulating EPC and EPC differentiation potential of 22 patients who underwent SAT were studied by fluorescence-activated cell sorter analysis and colony forming-unit assay,respectively. The plasma levels of VEGF and SDF-1 were measured by enzyme-linked immunosorbent assay. In response to SAT,the levels of both EPC and VEGF/SDF-1 markedly increased (P textless .001 vs baseline) but returned to the baseline levels after DSAT. A similar change was observed with the EPC clonogenic potential,but on DSAT the baseline level was incompletely attained. CONCLUSIONS: In response to SAT,patients with chronic heart failure show enhanced EPC levels and clonogenic potential that is mirrored by increased plasma VEGF and SDF-1 levels. DSAT can interfere with the maintenance of training-acquired VEGF/SDF-1-related EPC levels and clonogenic potential.
View Publication
产品类型:
产品号#:
05900
05950
产品名:
文献
Kanazawa I et al. (JAN 2007)
BMC cell biology 8 51
Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells.
BACKGROUND Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts,but their actions with regard to bone metabolism are still unclear. In this study,we investigated the effects of adiponectin on the proliferation,differentiation,and mineralization of osteoblastic MC3T3-E1 cells. RESULTS Adiponectin receptor type 1 (AdipoR1) mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase) was phosphorylated by both adiponectin and a pharmacological AMP kinase activator,5-amino-imidazole-4-carboxamide-riboside (AICAR),in the cells. AdipoR1 small interfering RNA (siRNA) transfection potently knocked down the receptor mRNA,and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA,as determined by real-time PCR,and reduced ALP activity and mineralization,as determined by von Kossa and Alizarin red stainings. In contrast,AMP kinase activation by AICAR (0.01-0.5 mM) in wild-type MC3T3-E1 cells augmented their proliferation,differentiation,and mineralization. BrdU assay showed that the addition of adiponectin (0.01-1.0 mug/ml) also promoted their proliferation. Osterix,but not Runx-2,appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression,respectively. CONCLUSION Taken together,this study suggests that adiponectin stimulates the proliferation,differentiation,and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.
View Publication
产品类型:
产品号#:
72704
产品名:
AICAR
文献
Povsic TJ et al. (DEC 2007)
Journal of the American College of Cardiology 50 23 2243--8
Circulating progenitor cells can be reliably identified on the basis of aldehyde dehydrogenase activity.
OBJECTIVES: Our objective was to develop and assess a novel endogenous progenitor cell (EPC) assay based on aldehyde dehydrogenase (ALDH) activity,and to define the relationship of ALDH-bright (ALDH(br)) cells with previously defined EPCs,patient age,and extent of coronary artery disease. BACKGROUND: Accurate assessment of circulating EPCs is of significant interest,yet current assays have limitations. Progenitor cells display high levels of ALDH activity. An assay based on ALDH activity may offer a simple means for enumerating EPCs. METHODS: We simultaneously determined the numbers of EPCs based on ALDH activity and cell surface expression of CD133,CD34,and vascular endothelial growth factor receptor-2 in 110 patients undergoing cardiac catheterization. We assessed the reproducibility of these estimates,correlation among EPC assays,and the association of ALDH(br) numbers with age and disease severity. RESULTS: Aldehyde dehydrogenase-bright cells were easily identified in nonmobilized peripheral blood with median and mean frequencies of 0.041% and 0.074%,respectively. Aldehyde dehydrogenase-bright cells expressed CD34 or CD133 cell surface markers (57.0% and 27.1%,respectively),correlated closely with CD133+CD34+ cells (r = 0.72; p textless 0.001),and differentiated into endothelial cells with greater efficiency than CD133+CD34+ cells. Aldehyde dehydrogenase-bright cell numbers were inversely associated with patient age and coronary disease severity. CONCLUSIONS: Aldehyde dehydrogenase activity represents a novel simplified method for quantifying EPCs. The correlation of ALDH(br) cells with clinical factors and outcomes warrants further study.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Dudeck A et al. ( 2011)
The European Journal of Immunology 41 7 1883--1893
Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function
Mast cells (MCs) play an important role in the regulation of protective adaptive immune responses against pathogens. However,it is still unclear whether MCs promote such host defense responses via direct effects on T cells or rather by modifying the functions of antigen-presenting cells. To identify the underlying mechanisms of the immunoregulatory capacity of MCs,we investigated the impact of MCs on dendritic cell (DC) maturation and function. We found that murine peritoneal MCs underwent direct crosstalk with immature DCs that induced DC maturation as evidenced by enhanced expression of costimulatory molecules. Furthermore,the MC/DC interaction resulted in the release of the T-cell modulating cytokines IFN-γ,IL-2,IL-6 and TGF-β into coculture supernatants and increased the IL-12p70,IFN-γ,IL-6 and TGF-β secretion of LPS-matured DCs. Such MC-primed" DCs subsequently induced efficient CD4+ T-cell proliferation. Surprisingly�
View Publication
产品类型:
产品号#:
18757
18757RF
产品名:
EasySep™小鼠CD117(cKIT)正选试剂盒
RoboSep™ 小鼠CD117(cKIT)正选试剂盒含滤芯吸头
文献
Dixon JE et al. (SEP 2011)
Molecular therapy : the journal of the American Society of Gene Therapy 19 9 1695--703
Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network.
The limited ability of the heart to regenerate has prompted development of new systems to produce cardiomyocytes for therapeutics. While differentiation of human embryonic stem cells (hESCs) into cardiomyocytes has been well documented,the process remains inefficient and/or expensive,and progress would be facilitated by better understanding the early genetic events that cause cardiac specification. By maintaining a transgenic cardiac-specific MYH6-monomeric red fluorescent protein (mRFP) reporter hESC line in conditions that promote pluripotency,we tested the ability of combinations of 15 genes to induce cardiac specification. Screening identified GATA4 plus TBX5 as the minimum requirement to activate the cardiac gene regulatory network and produce mRFP(+) cells,while a combination of GATA4,TBX5,NKX2.5,and BAF60c (GTNB) was necessary to generate beating cardiomyocytes positive for cTnI and α-actinin. Including the chemotherapeutic agent,Ara-C,from day 10 of induced differentiation enriched for cTnI/α-actinin double positive cells to 45%. Transient expression of GTNB for 5-7 days was necessary to activate the cardiogenesis through progenitor intermediates in a manner consistent with normal heart development. This system provides a route to test the effect of different factors on human cardiac differentiation and will be useful in understanding the network failures that underlie disease phenotypes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Binda E et al. (DEC 2012)
Cancer cell 22 6 765--80
The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas.
In human glioblastomas (hGBMs),tumor-propagating cells with stem-like characteristics (TPCs) represent a key therapeutic target. We found that the EphA2 receptor tyrosine kinase is overexpressed in hGBM TPCs. Cytofluorimetric sorting into EphA2(High) and EphA2(Low) populations demonstrated that EphA2 expression correlates with the size and tumor-propagating ability of the TPC pool in hGBMs. Both ephrinA1-Fc,which caused EphA2 downregulation in TPCs,and siRNA-mediated knockdown of EPHA2 expression suppressed TPCs self-renewal ex vivo and intracranial tumorigenicity,pointing to EphA2 downregulation as a causal event in the loss of TPCs tumorigenicity. Infusion of ephrinA1-Fc into intracranial xenografts elicited strong tumor-suppressing effects,suggestive of therapeutic applications.
View Publication
CCL19-CCR7-dependent reverse transendothelial migration of myeloid cells clears Chlamydia muridarum from the arterial intima.
Regions of the normal arterial intima predisposed to atherosclerosis are sites of ongoing monocyte trafficking and also contain resident myeloid cells with features of dendritic cells. However,the pathophysiological roles of these cells are poorly understood. Here we found that intimal myeloid cells underwent reverse transendothelial migration (RTM) into the arterial circulation after systemic stimulation of pattern-recognition receptors (PRRs). This process was dependent on expression of the chemokine receptor CCR7 and its ligand CCL19 by intimal myeloid cells. In mice infected with the intracellular pathogen Chlamydia muridarum,blood monocytes disseminated infection to the intima. Subsequent CCL19-CCR7-dependent RTM was critical for the clearance of intimal C. muridarum. This process was inhibited by hypercholesterolemia. Thus,RTM protects the normal arterial intima,and compromised RTM during atherogenesis might contribute to the intracellular retention of pathogens in atherosclerotic lesions.
View Publication
产品类型:
产品号#:
19853
19853RF
产品名:
EasySep™小鼠CD8+ T细胞分选试剂盒
RoboSep™ 小鼠CD8+ T细胞分选试剂盒
文献
Rahkonen N et al. (SEP 2016)
Stem cell research 17 3 498--503
Mature Let-7 miRNAs fine tune expression of LIN28B in pluripotent human embryonic stem cells.
MicroRNAs (miRNA) are central regulators of diverse biological processes and are important in the regulation of stem cell self-renewal. One of the widely studied miRNA-protein regulators is the Lin28-Let-7 pair. In this study,we demonstrate that contrary to the well-established models of mouse ES cells (mESC) and transformed human cancer cells,the pluripotent state of human ES cells (hESC) involves expression of mature Let-7 family miRNAs with concurrent expression of all LIN28 proteins. We show that mature Let-7 miRNAs are regulated during hESC differentiation and have opposite expression profile with LIN28B. Moreover,mature Let-7 miRNAs fine tune the expression levels of LIN28B protein in pluripotent hESCs,whereas silencing of LIN28 proteins have no effect on mature Let-7 levels. These results bring novel information to the highly complex network of human pluripotency and suggest that maintenance of hESC pluripotency differs greatly from the mESCs in regard to LIN28-Let-7 regulation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hunt NC et al. (FEB 2017)
Acta biomaterialia 49 329--343
3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is,however,limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel),0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker,MATH5. Furthermore,0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1,CRX,RCVRN,AP2α or VSX2) as determined by qRT-PCR,or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE,but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation,transport and transplantation of neural retina and RPE,and may also enhance formation of other pigmented,neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However,derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs,whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented,neural or epithelial tissue.
View Publication