Wegener M et al. (JUN 2015)
Drug discovery today 20 6 667--685
How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration.
The recently developed ability to differentiate primary adult stem cells and induced pluripotent stem cells (iPSCs) into cardiomyocytes is providing unprecedented opportunities to produce an unlimited supply of cardiomyocytes for use in patients with heart disease. Here,we examine the evidence for the preclinical use of such cells for successful heart regeneration. We also describe advances in the identification of new cardiac molecular and cellular targets to induce proliferation of cardiomyocytes for heart regeneration. Such new advances are paving the way for a new innovative drug development process for the treatment of heart disease.
View Publication
产品类型:
产品号#:
产品名:
文献
Aliahmad P et al. (OCT 2010)
Nature immunology 11 10 945--52
Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages.
TOX is a DNA-binding factor required for development of CD4(+) T cells,natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue-inducer cells,a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis,required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow,consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus,many cell lineages of the immune system share a TOX-dependent step for development.
View Publication
产品类型:
产品号#:
产品名:
文献
M. Kono et al. ( 2022)
Oncoimmunology 11 1 2021619
Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.
Fibroblast growth factor receptor 1 (FGFR1) is overexpressed in multiple types of solid tumors,including head and neck squamous cell carcinoma (HNSCC). Being associated with poor prognosis,FGFR1 is a potential therapeutic target for aggressive tumors. T cell-based cancer immunotherapy has played a central role in novel cancer treatments. However,the potential of antitumor immunotherapy targeting FGFR1 has not been investigated. Here,we showed that FGFR-tyrosine kinase inhibitors (TKIs) augmented antitumor effects of immune checkpoint inhibitors in an HNSCC mouse model and upregulated tumoral MHC class I and MHC class II expression in vivo and in vitro. This upregulation was associated with the mitogen-activated protein kinase signaling pathway,which is a crucial pathway for cancer development through FGFR signaling. Moreover,we identified an FGFR1-derived peptide epitope (FGFR1305-319) that could elicit antigen-reactive and multiple HLA-restricted CD4+ T cell responses. These T cells showed direct cytotoxicity against tumor cells that expressed FGFR1. Notably,FGFR-TKIs augmented antitumor effects of FGFR1-reactive T cells against human HNSCC cells. These results indicate that the combination of FGFR-TKIs with immunotherapy,such as an FGFR1-targeting peptide vaccine or immune checkpoint inhibitor,could be a novel and robust immunologic approach for treating patients with FGFR1-expressing cancer cells.
View Publication
产品类型:
产品号#:
17952
产品名:
EasySep™人CD4+ T细胞分选试剂盒
文献
Ellestad KK et al. (JUL 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 1 298--309
Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells.
The rising incidence of autoimmune diseases such as multiple sclerosis (MS) in developed countries might be due to a more hygienic environment,particularly during early life. To investigate this concept,we developed a model of neonatal exposure to a common pathogen-associated molecular pattern,LPS,and determined its impact on experimental autoimmune encephalomyelitis (EAE). Mice exposed to LPS at 2 wk of age showed a delayed onset and diminished severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE,induced at 12 wk,compared with vehicle-exposed animals. Spinal cord transcript levels of CD3epsilon and F4/80 were lower in LPS- compared with PBS-exposed EAE animals with increased IL-10 levels in the LPS-exposed group. Splenic CD11c(+) cells from LPS-exposed animals exhibited reduced MHC class II and CD83 expression but increased levels of CD80 and CD86 both before and during EAE. MOG-treated APC from LPS-exposed animals stimulated less T lymphocyte proliferation but increased expansion of CD4(+)FoxP3(+) T cells compared with APC from PBS-exposed animals. Neuropathological studies disclosed reduced myelin and axonal loss in spinal cords from LPS-exposed compared with PBS-exposed animals with EAE,and this neuroprotective effect was associated with an increased number of CD3(+)FoxP3(+) immunoreactive cells. Analyses of human brain tissue revealed that FoxP3 expression was detected in lymphocytes,albeit reduced in MS compared with non-MS patients' brains. These findings support the concept of early-life microbial exposure influencing the generation of neuroprotective regulatory T cells and may provide insights into new immunotherapeutic strategies for MS.
View Publication
产品类型:
产品号#:
产品名:
文献
H.-W. Wu et al. (may 2019)
Clinical cancer research : an official journal of the American Association for Cancer Research
Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells.
Purpose: We determined whether elimination of CD105+ cells in the tumor microenvironment (TME) with anti-CD105 antibodies enhanced anti-disialoganglioside (GD2) antibody dinutuximab therapy of neuroblastoma when combined with activated natural killer (aNK) cells.Experimental Design: The effect of MSCs and monocytes on antibody-dependent cellular cytotoxicity (ADCC) mediated by dinutuximab with aNK cells against neuroblastoma cells was determined in vitro. ADCC with anti-CD105 mAb TRC105 and aNK cells against MSCs,monocytes,and endothelial cells,which express CD105,was evaluated. Anti-neuroblastoma activity in immunodeficient NSG mice of dinutuximab with aNK cells without or with anti-CD105 mAbs was determined using neuroblastoma cell lines and a patient-derived xenograft.Results: ADCC mediated by dinutuximab with aNK cells against neuroblastoma cells in vitro was suppressed by addition of MSCs and monocytes,and dinutuximab with aNK cells was less effective against neuroblastomas formed with coinjected MSCs and monocytes in NSG mice than against those formed by tumor cells alone. Anti-CD105 antibody TRC105 with aNK cells mediated ADCC against MSCs,monocytes,and endothelial cells. Neuroblastomas formed in NSG mice by two neuroblastoma cell lines or a patient-derived xenograft coinjected with MSCs and monocytes were most effectively treated with dinutuximab and aNK cells when anti-human (TRC105) and anti-mouse (M1043) CD105 antibodies were added,which depleted human MSCs and murine endothelial cells and macrophages from the TME.Conclusions: Immunotherapy of neuroblastoma with anti-GD2 antibody dinutuximab and aNK cells is suppressed by CD105+ cells in the TME,but suppression is overcome by adding anti-CD105 antibodies to eliminate CD105+ cells.
View Publication