Combinatorial effector targeting (COMET) for transcriptional modulation and locus-specific biochemistry
SUMMARYUnderstanding how human gene expression is coordinately regulated by functional units of proteins across the genome remains a major biological goal. Here,we present COMET,a high-throughput screening platform for combinatorial effector targeting for the identification of transcriptional modulators. We generate libraries of combinatorial dCas9-based fusion proteins,containing two to six effector domains,allowing us to systematically investigate more than 110,000 combinations of effector proteins at endogenous human loci for their influence on transcription. Importantly,we keep full proteins or domains intact,maintaining catalytic cores and surfaces for protein-protein interactions. We observe more than 5800 significant hits that modulate transcription,we demonstrate cell type specific transcriptional modulation,and we further investigate epistatic relationships between our effector combinations. We validate unexpected combinations as synergistic or buffering,emphasizing COMET as both a method for transcriptional effector discovery,and as a functional genomics tool for identifying novel domain interactions and directing locus-specific biochemistry.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Mar 2024)
Nature Communications 15
DELVE: feature selection for preserving biological trajectories in single-cell data
Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate,identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here,we present DELVE,an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work,DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation,and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations,single-cell RNA sequencing,and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation,we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve. Characteristic genes or proteins driving continuous biological processes are difficult to uncover from noisy single-cell data. Here,authors present DELVE,an unsupervised feature selection method to identify core molecular features driving cell fate decisions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Sep 2024)
Nature Communications 15
Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements
CRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here,we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific,CRISPRa-responsive cis-regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells,which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes. Applying this method to a library of 493 gRNAs targeting candidate cis-regulatory elements in both K562 cells and iPSC-derived excitatory neurons,we identify gRNAs capable of specifically upregulating intended target genes and no other neighboring genes within 1?Mb,including gRNAs yielding upregulation of six autism spectrum disorder (ASD) and neurodevelopmental disorder (NDD) risk genes in neurons. A consistent pattern is that the responsiveness of individual enhancers to CRISPRa is restricted by cell type,implying a dependency on either chromatin landscape and/or additional trans-acting factors for successful gene activation. The approach outlined here may facilitate large-scale screens for gRNAs that activate genes in a cell type-specific manner. Scalable CRISPRa screening of cis-regulatory elements in non-cancer cell lines has proved challenging. Here,the authors describe a scalable,CRISPR activation screening framework to identify regulatory element-gene pairs in diverse cell types including cancer cells and neurons.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(May 2024)
Nature Communications 15
Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms
Alternative splicing events are a major causal mechanism for complex traits,but they have been understudied due to the limitation of short-read sequencing. Here,we generate a full-length isoform annotation of human immune cells from an individual by long-read sequencing for 29 cell subsets. This contains a number of unannotated transcripts and isoforms such as a read-through transcript of TOMM40-APOE in the Alzheimer’s disease locus. We profile characteristics of isoforms and show that repetitive elements significantly explain the diversity of unannotated isoforms,providing insight into the human genome evolution. In addition,some of the isoforms are expressed in a cell-type specific manner,whose alternative 3’-UTRs usage contributes to their specificity. Further,we identify disease-associated isoforms by isoform switch analysis and by integration of several quantitative trait loci analyses with genome-wide association study data. Our findings will promote the elucidation of the mechanism of complex diseases via alternative splicing. This paper unveils the complexity of human immune cell splicing,highlighting cell-specific isoforms and establishing connections between alternative splicing and complex traits. These findings have implications for understanding diseases and the evolution of the genome.
View Publication
Chen H et al. (DEC 2015)
Biological research 48 1 59
Functional disruption of human leukocyte antigen II in human embryonic stem cell.
BACKGROUND Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore,the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allograft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4(+) T cells-mediated allograft rejection. Hence,we focus on optimizing hESCs for clinic application through gene modification. RESULTS Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA (-/-) hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA (-/-) hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA (-/-) hESCs were powerless in IFN-$\$ expression of HLA II. CONCLUSION We generated HLA II defected hESCs via deleting CIITA,a master regulator of constitutive and IFN-$\$ expression of HLA II genes. CIITA (-/-) hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA (-/-) hESCs-derived cells could be used in cell therapy (e.g.,T cells and DCs) and escape the attack of receptors' CD4(+) T cells,which are the main effector cells of cellular immunity in allograft.
View Publication
Qin H et al. (MAR 2016)
Cell reports 14 10 2301--2312
YAP Induces Human Naive Pluripotency.
The human naive pluripotent stem cell (PSC) state,corresponding to a pre-implantation stage of development,has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs) and induced PSCs (iPSCs) promotes the generation of naive PSCs. Lysophosphatidic acid (LPA) can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate,a normal karyotype,the ability to form teratomas,transcriptional similarities to human pre-implantation embryos,reduced heterochromatin levels,and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP-/- cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state,with implications for early human embryology.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ran FA et al. (SEP 2013)
Cell 154 6 1380--1389
Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity
Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence,which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here,we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity,simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity. textcopyright 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chronopoulou E et al. ( 2014)
1131 47--70
Hybridoma technology for the generation of rodent mAbs via classical fusion
Monoclonal antibodies (mAbs) have proven to be instrumental in the advancement of research,diagnostic,industrial vaccine,and therapeutic applications. The use of mAbs in laboratory protocols has been growing in an exponential fashion for the last four decades. Described herein are methods for the development of highly specific mAbs through traditional hybridoma fusion. For ultimate success,a series of simultaneously initiated protocols are to be undertaken with careful attention to cell health of both the myeloma fusion partner and immune splenocytes. Coordination and attention to detail will enable a researcher with basic tissue culture skills to generate mAbs from immunized rodents to a variety of antigens (including proteins,carbohydrates,DNA,and haptens) (see Note 1). Furthermore,in vivo and in vitro methods used for antigen sensitization of splenocytes prior to somatic fusion are described herein.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Mendoza N et al. ( 2014)
1181 97--108
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium,which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques,such as photolithography,generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition,such technologies are costly and require a clean room for fabrication. This chapter offers an easy,fast,robust,and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally,this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly,this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
M. Ventre et al. (jul 2019)
Journal of biomedical materials research. Part A
Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging,making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here,aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness,whereas stiff ones,in presence of biochemical supplements,promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population,that is,soft aligned matrices ameliorate the spontaneous adipogenic differentiation,whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment,which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.
View Publication