Kempf H et al. (SEP 2015)
Nature protocols 10 9 1345--1361
Cardiac differentiation of human pluripotent stem cells in scalable suspension culture.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are a potential cell source for regenerative therapies,drug discovery and disease modeling. All these applications require a routine supply of relatively large quantities of in vitro-generated CMs. This protocol describes a suspension culture-based strategy for the generation of hPSC-CMs as cell-only aggregates,which facilitates process development and scale-up. Aggregates are formed for 4 d in hPSC culture medium followed by 10 d of directed differentiation by applying chemical Wnt pathway modulators. The protocol is applicable to static multiwell formats supporting fast adaptation to specific hPSC line requirements. We also demonstrate how to apply the protocol using stirred tank bioreactors at a 100-ml scale,providing a well-controlled upscaling platform for CM production. In bioreactors,the generation of 40-50 million CMs per differentiation batch at textgreater80% purity without further lineage enrichment can been achieved within 24 d.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Burkart AM et al. ( 2016)
Scientific reports 6 February 22788
Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function.
Insulin resistance,a critical component of type 2 diabetes (T2D),precedes and predicts T2D onset. T2D is also associated with mitochondrial dysfunction. To define the cause-effect relationship between insulin resistance and mitochondrial dysfunction,we compared mitochondrial metabolism in induced pluripotent stem cells (iPSC) from 5 healthy individuals and 4 patients with genetic insulin resistance due to insulin receptor mutations. Insulin-resistant iPSC had increased mitochondrial number and decreased mitochondrial size. Mitochondrial oxidative function was impaired,with decreased citrate synthase activity and spare respiratory capacity. Simultaneously,expression of multiple glycolytic enzymes was decreased,while lactate production increased 80%. These perturbations were accompanied by an increase in ADP/ATP ratio and 3-fold increase in AMPK activity,indicating energetic stress. Insulin-resistant iPSC also showed reduced catalase activity and increased susceptibility to oxidative stress. Thus,insulin resistance can lead to mitochondrial dysfunction with reduced mitochondrial size,oxidative activity,and energy production.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tsolis KC et al. (JUN 2016)
Journal of Proteome Research 15 6 1995--2007
Proteome changes during transition from human embryonic to vascular progenitor cells
Human embryonic stem cells (hESCs) are promising in regenerative medicine (RM) due to their differentiation plasticity and proliferation potential. However,a major challenge in RM is the generation of a vascular system to support nutrient flow to newly synthesized tissues. Here we refined an existing method to generate tight vessels by differentiating hESCs in CD34(+) vascular progenitor cells using chemically defined media and growth conditions. We selectively purified these cells from CD34(-) outgrowth populations also formed. To analyze these differentiation processes,we compared the proteomes of the hESCs with those of the CD34(+) and CD34(-) populations using high resolution mass spectrometry,label-free quantification,and multivariate analysis. Eighteen protein markers validate the differentiated phenotypes in immunological assays; nine of these were also detected by proteomics and show statistically significant differential abundance. Another 225 proteins show differential abundance between the three cell types. Sixty-three of these have known functions in CD34(+) and CD34(-) cells. CD34(+) cells synthesize proteins implicated in endothelial cell differentiation and smooth muscle formation,which support the bipotent phenotype of these progenitor cells. CD34(-) cells are more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage markers. The remaining textgreater150 differentially abundant proteins in CD34(+) or CD34(-) cells raise testable hypotheses for future studies to probe vascular morphogenesis.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
TeSlaa T et al. (SEP 2016)
Cell metabolism 24 3 485--493
α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.
Pluripotent stem cells (PSCs) can self-renew or differentiate from naive or more differentiated,primed,pluripotent states established by specific culture conditions. Increased intracellular α-ketoglutarate (αKG) was shown to favor self-renewal in naive mouse embryonic stem cells (mESCs). The effect of αKG or αKG/succinate levels on differentiation from primed human PSCs (hPSCs) or mouse epiblast stem cells (EpiSCs) remains unknown. We examined primed hPSCs and EpiSCs and show that increased αKG or αKG-to-succinate ratios accelerate,and elevated succinate levels delay,primed PSC differentiation. αKG has been shown to inhibit the mitochondrial ATP synthase and to regulate epigenome-modifying dioxygenase enzymes. Mitochondrial uncoupling did not impede αKG-accelerated primed PSC differentiation. Instead,αKG induced,and succinate impaired,global histone and DNA demethylation in primed PSCs. The data support αKG promotion of self-renewal or differentiation depending on the pluripotent state.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05940
05946
07174
85850
85857
85870
85875
100-0485
100-1077
产品名:
TeSR™-E6
mTeSR™1
mTeSR™1
温和细胞解离试剂
ReLeSR™
Kaur G et al. (JUL 2013)
Journal of Clinical Neuroscience 20 7 1014--1018
Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with high mortality and has been well known to involve many molecular pathways,including G-protein coupled receptor (GPCR)-mediated signaling (such as epithelial growth factor receptor [EGFR] and platelet derived growth factor receptor [PDGFR]). G protein-coupled receptor kinases (GRK) directly regulate GPCR activity by phosphorylating activated agonist-bound receptors to desensitize signaling and internalize receptors through beta-arrestins. Recent studies in various cancers,including prostate and breast cancer,have highlighted the role of change in GRK expression to oncogenesis and tumor proliferation. In this study,we evaluated the expression of GRK5 in grade II to grade IV glioma specimens using immunohistochemistry and found that GRK5 expression levels are highly correlated with aggressiveness of glioma. We used culture conditions to selectively promote the growth of either glioblastoma cells with stem cell markers (GSC) or differentiated glioblastoma cells (DGC) from fresh GBM specimens. GSC are known to be highly invasive and mobile,and have the capacity to self-renew and are more resistant to chemotherapy and radiation compared to differentiated populations of GBM. We examined the expression of GRK5 in these two sets of culturing conditions for GBM cells and found that GRK5 expression is upregulated in GSC compared to differentiated GBM cells. To better understand the role of GRK5 in GBM-derived stem cells,we created stable GRK5 knockdown and evaluated the proliferation rate. Using an ATP chemiluminescence assay,we show,for the first time,that knocking down the expression of GRK5 decreased the proliferation rate of GSC in contrast to control.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Drago D et al. (SEP 2016)
Journal of neuroinflammation 13 1 232
Metabolic determinants of the immune modulatory function of neural stem cells.
BACKGROUND Neural stem cells (NSCs) display tissue trophic and immune modulatory therapeutic activities after transplantation in central nervous system disorders. The intercellular interplay between stem cells and target immune cells is increased in NSCs exposed to inflammatory cues. Here,we hypothesize that inflammatory cytokine signalling leads to metabolic reprogramming of NSCs regulating some of their immune modulatory effects. METHODS NSC lines were prepared from the subventricular zone (SVZ) of 7-12-week-old mice. Whole secretome-based screening and analysis of intracellular small metabolites was performed in NSCs exposed to cocktails of either Th1-like (IFN-γ,500 U/ml; TNF-α,200 U/ml; IL-1β,100 U/ml) or Th2-like (IL-4,IL-5 and IL-13; 10 ng/ml) inflammatory cytokines for 16 h in vitro. Isotopologues distribution of arginine and downstream metabolites was assessed by liquid chromatography/mass spectrometry in NSCs incubated with U-(13)C6 L-arginine in the presence or absence of Th1 or Th2 cocktails (Th1 NSCs or Th2 NSCs). The expression of arginase I and II was investigated in vitro in Th1 NSCs and Th2 NSCs and in vivo in the SVZ of mice with experimental autoimmune encephalomyelitis,as prototypical model of Th1 cell-driven brain inflammatory disease. The effects of the inflammatory cytokine signalling were studied in NSC-lymph node cells (LNC) co-cultures by flow cytometry-based analysis of cell proliferation following pan-arginase inhibition with N(ω)-hydroxy-nor-arginine (nor-NOHA). RESULTS Cytokine-primed NSCs showed significantly higher anti-proliferative effect in co-cultures vs. control NSCs. Metabolomic analysis of intracellular metabolites revealed alteration of arginine metabolism and increased extracellular arginase I activity in cytokine-primed NSCs. Arginase inhibition by nor-NOHA partly rescued the anti-proliferative effects of cytokine-primed NSCs. CONCLUSIONS Our work underlines the use of metabolic profiling as hypothesis-generating tools that helps unravelling how stem cell-mediated mechanisms of tissue restoration become affected by local inflammatory responses. Among different therapeutic candidates,we identify arginase signalling as novel metabolic determinant of the NSC-to-immune system communication.
View Publication
S. Suthen et al. (nov 2022)
Hepatology (Baltimore,Md.) 76 5 1329--1344
Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC.
BACKGROUND AND AIMS Hypoxia is one of the central players in shaping the immune context of the tumor microenvironment (TME). However,the complex interplay between immune cell infiltrates within the hypoxic TME of HCC remains to be elucidated. APPROACH AND RESULTS We analyzed the immune landscapes of hypoxia-low and hypoxia-high tumor regions using cytometry by time of light,immunohistochemistry,and transcriptomic analyses. The mechanisms of immunosuppression in immune subsets of interest were further explored using in vitro hypoxia assays. Regulatory T cells (Tregs) and a number of immunosuppressive myeloid subsets,including M2 macrophages and human leukocyte antigen-DR isotype (HLA-DRlo ) type 2 conventional dendritic cell (cDC2),were found to be significantly enriched in hypoxia-high tumor regions. On the other hand,the abundance of active granzyme Bhi PD-1lo CD8+ T cells in hypoxia-low tumor regions implied a relatively active immune landscape compared with hypoxia-high regions. The up-regulation of cancer-associated genes in the tumor tissues and immunosuppressive genes in the tumor-infiltrating leukocytes supported a highly pro-tumorigenic network in hypoxic HCC. Chemokine genes such as CCL20 (C-C motif chemokine ligand 20) and CXCL5 (C-X-C motif chemokine ligand 5) were associated with recruitment of both Tregs and HLA-DRlo cDC2 to hypoxia-high microenvironments. The interaction between Tregs and cDC2 under a hypoxic TME resulted in a loss of antigen-presenting HLA-DR on cDC2. CONCLUSIONS We uncovered the unique immunosuppressive landscapes and identified key immune subsets enriched in hypoxic HCC. In particular,we identified a potential Treg-mediated immunosuppression through interaction with a cDC2 subset in HCC that could be exploited for immunotherapies.
View Publication
产品类型:
产品号#:
18783
18783RF
产品名:
EasySep™ 小鼠CD4+CD25+调节性T细胞分选试剂盒 II
RoboSep™ 小鼠CD4+CD25+调节性T细胞分选试剂盒II
A. M. Chinn et al. ( 2022)
Frontiers in pharmacology 13 833832
PDE4B Is a Homeostatic Regulator of Cyclic AMP in Dendritic Cells.
Chronic decreases in the second messenger cyclic AMP (cAMP) occur in numerous settings,but how cells compensate for such decreases is unknown. We have used a unique system-murine dendritic cells (DCs) with a DC-selective depletion of the heterotrimeric GTP binding protein G$\alpha$s-to address this issue. These mice spontaneously develop Th2-allergic asthma and their DCs have persistently lower cAMP levels. We found that phosphodiesterase 4B (PDE4B) is the primary phosphodiesterase expressed in DCs and that its expression is preferentially decreased in G$\alpha$s-depleted DCs. PDE4B expression is dynamic,falling and rising in a protein kinase A-dependent manner with decreased and increased cAMP concentrations,respectively. Treatment of DCs that drive enhanced Th2 immunity with a PDE4B inhibitor ameliorated DC-induced helper T cell response. We conclude that PDE4B is a homeostatic regulator of cellular cAMP concentrations in DCs and may be a target for treating Th2-allergic asthma and other settings with low cellular cAMP concentrations.
View Publication
产品类型:
产品号#:
18780
19852
19852RF
18781
18781RF
18780RF
产品名:
EasySep™ 小鼠CD11c正选试剂盒 II
EasySep™小鼠CD4+ T细胞分选试剂盒
RoboSep™ 小鼠CD4+ T细胞分选试剂盒
EasySep™小鼠CD11c正选试剂盒II及脾脏解离液
RoboSep™ 小鼠CD11c正选试剂盒II及脾脏解离液
RoboSep™ 小鼠CD11c正选试剂盒II
S. S. Leung et al. (sep 2022)
Diabetes 71 9 1994--2008
Soluble RAGE Prevents Type 1 Diabetes Expanding Functional Regulatory T Cells.
Type 1 diabetes is an autoimmune disease with no cure,where clinical translation of promising therapeutics has been hampered by the reproducibility crisis. Here,short-term administration of an antagonist to the receptor for advanced glycation end products (sRAGE) protected against murine diabetes at two independent research centers. Treatment with sRAGE increased regulatory T cells (Tregs) within the islets,pancreatic lymph nodes,and spleen,increasing islet insulin expression and function. Diabetes protection was abrogated by Treg depletion and shown to be dependent on antagonizing RAGE with use of knockout mice. Human Tregs treated with a RAGE ligand downregulated genes for suppression,migration,and Treg homeostasis (FOXP3,IL7R,TIGIT,JAK1,STAT3,STAT5b,CCR4). Loss of suppressive function was reversed by sRAGE,where Tregs increased proliferation and suppressed conventional T-cell division,confirming that sRAGE expands functional human Tregs. These results highlight sRAGE as an attractive treatment to prevent diabetes,showing efficacy and reproducibility at multiple research centers and in human T cells.
View Publication
产品类型:
产品号#:
17555
18000
17555RF
产品名:
EasySep™人初始CD4+ T细胞分选试剂盒II
EasySep™磁极
RoboSep™ 人初始CD4+ T细胞分选试剂盒II
C. M. Sungur et al. (dec 2022)
The Journal of clinical investigation 132 24
Human NK cells confer protection against HIV-1 infection in humanized mice.
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection,improved functional development of human NK cells in these hosts is needed. Here,we report the humanized MISTRG-6-15 mouse model,in which NK cells were quick to expand and exhibit degranulation,cytotoxicity,and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells,antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover,a broadly neutralizing antibody,PGT121,enhanced NK cell function in vivo,consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall,our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
View Publication