Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However,we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis,particularly in the late stage,where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus,we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge,the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this,we generated inducible TRIB3 overexpression hESCs,named TRIB3tet-on OE H9,based on a Tet-On system. Then,we analyzed hemoglobin expression,condensed chromosomes,organelle clearance,and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry,enhanced hemoglobin and related protein expression in Western blot,decreased nuclear area size,promoted enucleation rate,decreased lysosome and mitochondria number,more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 ?g/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore,our study delineates the role of TRIB3 in terminal erythropoiesis,and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin. Highlights•TRIB3 boosts erythroid cell maturation.•Key insights into erythropoiesis from hESCs.•Enhanced ubiquitin-proteasome system and downstream mitophagy in erythroid differentiation.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(Feb 2024)
Frontiers in Cell and Developmental Biology 12 3
In vitro characterization of 3D culture-based differentiation of human liver stem cells
Introduction: The lack of functional hepatocytes poses a significant challenge for drug safety testing and therapeutic applications due to the inability of mature hepatocytes to expand and their tendency to lose functionality in vitro. Previous studies have demonstrated the potential of Human Liver Stem Cells (HLSCs) to differentiate into hepatocyte-like cells within an in vitro rotary cell culture system,guided by a combination of growth factors and molecules known to regulate hepatocyte maturation. In this study,we employed a matrix multi-assay approach to comprehensively characterize HLSC differentiation. Methods: We evaluated the expression of hepatic markers using qRT-PCR,immunofluorescence,and Western blot analysis. Additionally,we measured urea and FVIII secretion into the supernatant and developed an updated indocyanine green in vitro assay to assess hepatocyte functionality. Results: Molecular analyses of differentiated HLSC aggregates revealed significant upregulation of hepatic genes,including CYP450,urea cycle enzymes,and uptake transporters exclusively expressed on the sinusoidal side of mature hepatocytes,evident as early as 1 day post-differentiation. Interestingly,HLSCs transiently upregulated stem cell markers during differentiation,followed by downregulation after 7 days. Furthermore,differentiated aggregates demonstrated the ability to release urea and FVIII into the supernatant as early as the first 24 h,with accumulation over time. Discussion: These findings suggest that a 3D rotation culture system may facilitate rapid hepatic differentiation of HLSCs. Despite the limitations of this rotary culture system,its unique advantages hold promise for characterizing HLSC GMP batches for clinical applications.
View Publication
产品类型:
产品号#:
05990
产品名:
TeSR™-E8™
S. G. Kellaway et al. (Feb 2024)
Nature Communications 15
Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth
Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations,maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However,patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here,we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model,we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity. Subject terms: Cancer stem cells,Acute myeloid leukaemia,Target validation
View Publication
产品类型:
产品号#:
04437
04447
产品名:
MethoCult™表达
MethoCult™表达
J. N. Contessa et al. (may 2008)
Cancer research 68 10 3803--9
Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells.
Receptor tyrosine kinases (RTK) are therapeutic targets for the treatment of malignancy. However,tumor cells develop resistance to targeted therapies through the activation of parallel signaling cascades. Recent evidence has shown that redundant or compensatory survival signals responsible for resistance are initiated by nontargeted glycoprotein RTKs coexpressed by the cell. We hypothesized that disrupting specific functions of the posttranslational machinery of the secretory pathway would be an effective strategy to target both primary and redundant RTK signaling. Using the N-linked glycosylation inhibitor,tunicamycin,we show that expression levels of several RTKS (EGFR,ErbB2,ErbB3,and IGF-IR) are exquisitely sensitive to inhibition of N-linked glycosylation. Disrupting this synthetic process reduces both cellular protein levels and receptor activity in tumor cells through retention of the receptors in the endoplasmic reticulum/Golgi compartments. Using U251 glioma and BXPC3 pancreatic adenocarcinoma cell lines,two cell lines resistant to epidermal growth factor receptor-targeted therapies,we show that inhibiting N-linked glycosylation markedly reduces RTK signaling through Akt and radiosensitizes tumor cells. In comparison,experiments in nontransformed cells showed neither a reduction in RTK-dependent signaling nor an enhancement in radiosensitivity,suggesting the potential for a therapeutic ratio between tumors and normal tissues. This study provides evidence that enzymatic steps regulating N-linked glycosylation are novel targets for developing approaches to sensitize tumor cells to cytotoxic therapies.
View Publication
产品类型:
产品号#:
100-0570
100-0571
产品名:
衣霉素
衣霉素
N. Zhu et al. ( 2020)
Nature communications 11 1 3910
Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells.
SARS-CoV-2,a $\beta$-coronavirus,has rapidly spread across the world,highlighting its high transmissibility,but the underlying morphogenesis and pathogenesis remain poorly understood. Here,we characterize the replication dynamics,cell tropism and morphogenesis of SARS-CoV-2 in organotypic human airway epithelial (HAE) cultures. SARS-CoV-2 replicates efficiently and infects both ciliated and secretory cells in HAE cultures. In comparison,HCoV-NL63 replicates to lower titers and is only detected in ciliated cells. SARS-CoV-2 shows a similar morphogenetic process as other coronaviruses but causes plaque-like cytopathic effects in HAE cultures. Cell fusion,apoptosis,destruction of epithelium integrity,cilium shrinking and beaded changes are observed in the plaque regions. Taken together,our results provide important insights into SARS-CoV-2 cell tropism,replication and morphogenesis.
View Publication
Matsumoto K et al. (JAN 2000)
Stem cells (Dayton,Ohio) 18 3 196--203
In vitro proliferation potential of AC133 positive cells in peripheral blood.
AC133 antigen is a novel marker for human hematopoietic stem/progenitor cells. In this study,we examined the expression and proliferation potential of AC133(+) cells obtained from steady-state peripheral blood (PB). The proportion of AC133(+) cells in the CD34(+) subpopulation of steady-state PB was significantly lower than that of cord blood (CB),although that of cytokine-mobilized PB was higher than that of CB. The proliferation potential of AC133(+)CD34(+) and AC133(-)CD34(+) cells was examined by colony-forming analysis and analysis of long-term culture-initiating cells (LTC-IC). Although the total number of colony-forming cells was essentially the same in the AC133(+)CD34(+) fraction as in the AC133(-)CD34(+) fraction,the proportion of LTC-IC was much higher in the AC133(+)CD34(+) fraction. Virtually no LTC-IC were detected in the AC133(-)CD34(+) fraction. In addition,the features of the colonies grown from these two fractions were quite different. Approximately 70% of the colonies derived from the AC133(+)CD34(+) fraction were granulocyte-macrophage colonies,whereas more than 90% of the colonies derived from the AC133(-)CD34(+) fraction were erythroid colonies. Furthermore,an ex vivo expansion study observed expansion of colony-forming cells only in the AC133(+)CD34(+) population,and not in the AC133(-)CD34(+) population. These findings suggest that to isolate primitive hematopoietic cells from steady-state PB,selection by AC133 expression is better than selection by CD34 expression.
View Publication
产品类型:
产品号#:
04034
04044
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
Lane ME et al. ( 2001)
Cancer research 61 16 6170--6177
A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells.
Recent studies have indicated that the development of cyclin-dependent kinase (cdk)2 inhibitors that deregulate E2F are a plausible pharmacological strategy for novel antineoplastic agents. We show here that 3-[1-(3H-Imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516),a novel 3-substituted indolinone compound,binds to and selectively inhibits the activity of cdk2. This inhibition results in a time-dependent decrease (4-64%) in the phosphorylation of the retinoblastoma protein pRb,an increase in caspase-3 activation (5-84%),and alterations in cell cycle resulting in either a G(0)-G(1) or a G(2)-M block. We also report here cell line differences in the cdk-dependent phosphorylation of pRb. These findings demonstrate that SU9516 is a selective cdk2 inhibitor and support the theory that compounds that inhibit cdk2 are viable resources in the development of new antineoplastic agents.
View Publication
产品类型:
产品号#:
73452
产品名:
SU9516
Wu X et al. (DEC 2002)
Journal of the American Chemical Society 124 49 14520--1
A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells.
Purmorphamine,which is a 2,6,9-trisubstituted purine compound,was discovered through cell-based high-throughput screening from a heterocycle combinatorial library. It differentiates multipotent mesenchymal progenitor cells into an osteoblast lineage. It will serve as a unique chemical tool to study the molecular mechanisms of osteogenesis of stem cells and bone development.
View Publication
产品类型:
产品号#:
72202
72204
100-1049
产品名:
Purmorphamine
Purmorphamine
Purmorphamine
Eguchi M et al. (JAN 2005)
Proceedings of the National Academy of Sciences of the United States of America 102 4 1133--8
Directing oncogenic fusion genes into stem cells via an SCL enhancer.
TEL-TRKC is a fusion gene generated by chromosomal translocation and encodes an activated tyrosine kinase. Uniquely,it is found in both solid tumors and leukemia. However,a single exon difference (in TEL) in TEL-TRKC fusions is associated with the two sets of cancer phenotypes. We expressed the two TEL-TRKC variants in vivo by using the 3' regulatory element of SCL that is selectively active in a subset of mesodermal cell lineages,including endothelial and hematopoietic stem cells and progenitors. The leukemia form of TEL-TRKC (-exon 5 of TEL) enhanced hematopoietic stem cell renewal and initiated leukemia. In contrast,the TEL-TRKC solid tumor variant (+ TEL exon 5) elicited an embryonic lethal phenotype with impairment of both angiogenesis and hematopoiesis indicative of an effect at the level of the hemangioblasts. The ability of TEL-TRKC to repress expression of Flk1,a critical regulator of early endothelial and hematopoietic cells,depended on TEL exon 5. These data indicate that related oncogenic fusion proteins similarly expressed in a hierarchy of early stem cells can have selective,cell type-specific developmental impacts.
View Publication