Dose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation,a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation,as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data,possibly due to their crosstalk with Notch Signaling. Overall,this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Hagness M et al. ( 2012)
The Journal of Immunology 188 11 5459--66
Kinetics and activation requirements of contact-dependent immune suppression by human regulatory T cells
Naturally occurring regulatory T cells (Tregs) maintain self tolerance by dominant suppression of potentially self-reactive T cells in peripheral tissues. However,the activation requirements,the temporal aspects of the suppressive activity,and mode of action of human Tregs are subjects of controversy. In this study,we show that Tregs display significant variability in the suppressive activity ex vivo as 54% of healthy blood donors examined had fully suppressive Tregs spontaneously,whereas in the remaining donors,anti-CD3/CD2/CD28 stimulation was required for Treg suppressive activity. Furthermore,anti-CD3/CD2/CD28 stimulation for 6 h and subsequent fixation in paraformaldehyde rendered the Tregs fully suppressive in all donors. The fixation-resistant suppressive activity of Tregs operated in a contact-dependent manner that was not dependent on APCs,but could be fully obliterated by trypsin treatment,indicating that a cell surface protein is directly involved. By add-back of active,fixed Tregs at different time points after activation of responding T cells,the responder cells were susceptible to Treg-mediated immune suppression up to 24 h after stimulation. This defines a time window in which effector T cells are susceptible to Treg-mediated immune suppression. Lastly,we examined the effect of a set of signaling inhibitors that perturb effector T cell activation and found that none of the examined inhibitors affected Treg activation,indicating pathway redundancy or that Treg activation proceeds by signaling mechanisms distinct from those of effector T cells.
View Publication
产品类型:
产品号#:
07811
07861
15022
15062
产品名:
Lymphoprep™
Lymphoprep™
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Lock FE et al. (OCT 2013)
Oncogene 32 44 5210--5219
Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche.
The sub-population of tumor cells termed 'cancer stem cells' (CSCs) possess the capability to generate tumors,undergo epithelial-mesenchymal transition (EMT) and are implicated in metastasis,making treatments to specifically target CSCs an attractive therapeutic strategy. Tumor hypoxia plays a key role in regulating EMT and cancer stem cell function. Carbonic anhydrase IX (CAIX) is a hypoxia-inducible protein that regulates cellular pH to promote cancer cell survival and invasion in hypoxic microenvironments and is a biomarker of poor prognosis for breast cancer metastasis and survival. Here,we demonstrate that inhibition of CAIX expression or activity with novel small-molecule inhibitors in breast cancer cell lines,or in primary metastatic breast cancer cells,results in the inhibition of breast CSC expansion in hypoxia. We identify the mTORC1 axis as a critical pathway downstream of CAIX in the regulation of cancer stem cell function. CAIX is also required for expression of EMT markers and regulators,as well as drivers of 'stemness',such as Notch1 and Jagged1 in isolated CSCs. In addition,treatment of mice bearing orthotopic breast tumors with CAIX-specific small-molecule inhibitors results in significant depletion of CSCs within these tumors. Furthermore,combination treatment with paclitaxel results in enhanced tumor growth delay and eradication of lung metastases. These data demonstrate that CAIX is a critical mediator of the expansion of breast CSCs in hypoxic niches by sustaining the mesenchymal and 'stemness' phenotypes of these cells,making CAIX an important therapeutic target for selectively depleting breast CSCs.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Walker TL et al. (FEB 2013)
The Journal of neuroscience : the official journal of the Society for Neuroscience 33 7 3010--3024
Prominin-1 Allows Prospective Isolation of Neural Stem Cells from the Adult Murine Hippocampus.
Prominin-1 (CD133) is commonly used to isolate stem and progenitor cells from the developing and adult nervous system and to identify cancer stem cells in brain tumors. However,despite extensive characterization of Prominin-1(+) precursor cells from the adult subventricular zone,no information about the expression of Prominin-1 by precursor cells in the subgranular zone (SGZ) of the adult hippocampus has been available. We show here that Prominin-1 is expressed by a significant number of cells in the SGZ of adult mice in vivo and ex vivo,including postmitotic astrocytes. A small subset of Prominin-1(+) cells coexpressed the nonspecific precursor cell marker Nestin as well as GFAP and Sox2. Upon fluorescence-activated cell sorting,only Prominin-1/Nestin double-positive cells fulfilled the defining stem cell criteria of proliferation,self-renewal,and multipotentiality as assessed by a neurosphere assay. In addition,isolated primary Prominin-1(+) cells preferentially migrated to the neurogenic niche in the SGZ upon transplantation in vivo. Finally,despite its expression by various stem and progenitor cells,Prominin-1 turned out to be dispensable for precursor cell proliferation in vitro and in vivo. Nevertheless,a net decrease in hippocampal neurogenesis,by ∼30% was found in Prominin-1 knock-out mice,suggesting other roles in controlling adult hippocampal neurogenesis. Remarkably,an upregulation of Prominin-2 was detected in Prominin-1-deficient mice highlighting a potential compensatory mechanism,which might explain the lack of severe symptoms in individuals carrying mutations in the Prom1 gene.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物(小鼠和大鼠)
文献
Maroof AM et al. (MAY 2013)
Cell stem cell 12 5 559--72
Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells.
Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases,including schizophrenia,autism,and epilepsy. Here,we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles,neurotransmitter phenotypes,and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.
View Publication
产品类型:
产品号#:
72672
72674
产品名:
XAV939
XAV939
文献
Lawton BR et al. (OCT 2013)
Stem Cell Reviews and Reports 9 5 578--585
Effect of a Matrigel Sandwich on Endodermal Differentiation of Human Embryonic Stem Cells
Definitive endoderm can be derived from human embryonic stem cells using low serum medium with cytokines involved in the epithelial-to-mesenchymal transition,including Activin A and Wnt3A. The purpose of this study was to develop an improved protocol that permits the induction of definitive endoderm while avoiding the high rate of cell death that often occurs with existing protocols. By including insulin and other nutrients,we demonstrate that cell viability can be preserved throughout differentiation. In addition,modifying a matrigel sandwich method previously reported to induce precardiac mesoderm allows for enhanced endodermal differentiation based on expression of endoderm-associated genes. The morphological and migratory characteristics of cells cultured by the technique,as well as gene expression patterns,indicate that the protocol can emulate key events in gastrulation towards the induction of definitive endoderm.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Choi SA et al. (JAN 2014)
European Journal of Cancer 50 1 137--149
Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase
Aldehyde dehydrogenase (ALDH) has been identified in stem cells from both normal and cancerous tissues. This study aimed to evaluate the potential of ALDH as a universal brain tumour initiating cell (BTIC) marker applicable to primary brain tumours and their biological role in maintaining stem cell status. Cells from various primary brain tumours (24paediatric and 6 adult brain tumours) were stained with Aldefluor and sorted by flow cytometry. We investigated the impact of ALDH expression on BTIC characteristics in vitro and on tumourigenic potential in vivo. Primary brain tumours showed universal expression of ALDH,with 0.3-28.9% of the cells in various tumours identified as ALDH(+). The proportion of CD133(+) cells within ALDH(+) is higher than ALDH cells. ALDH(+) cells generate neurospheres with high proliferative potential,express neural stem cell markers and differentiate into multiple nervous system lineages. ALDH(+) cells tend to show high expression of induced pluripotent stem cell-related genes. Notably,targeted knockdown of ALDH1 by shRNA interference in BTICs potently disturbed their self-renewing ability. After 3months,ALDH(+) cells gave rise to tumours in 93% of mice whereas ALDH cells did not. The characteristic pathology of mice brain tumours from ALDH(+) cells was similar to that of human brain tumours,and these cells are highly proliferative in vivo. Our data suggest that primary brain tumours contain distinct subpopulations of cells that have high expression levels of ALDH and BTIC characteristics. ALDH might be a potential therapeutic target applicable to primary brain tumours.
View Publication
产品类型:
产品号#:
01700
01705
05750
05752
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 分化试剂盒(人)
文献
Francipane MG and Lagasse E ( 2013)
Oncotarget 4 11 1948--1962
Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1.
Metastatic colorectal cancer (CRC) is incurable for most patients. Since mammalian target of rapamycin (mTOR) has been suggested as a crucial modulator of tumor biology,we aimed at evaluating the effectiveness of mTOR targeting for CRC therapy. To this purpose,we analyzed mTOR expression and the effect of mTOR inhibition in cancer stem-like cells isolated from three human metastatic CRCs (CoCSCs). CoCSCs exhibited a strong mTOR complex 2 (mTORC2) expression,and a rare expression of mTOR complex 1 (mTORC1). This latter correlated with differentiation,being expressed in CoCSC-derived xenografts. We indicate Serum/glucocorticoid-regulated kinase 1 (SGK1) as the possible main mTORC2 effector in CoCSCs,as highlighted by the negative effect on cancer properties following its knockdown. mTOR inhibitors affected CoCSCs differently,resulting in proliferation,autophagy as well as apoptosis induction. The apoptosis-inducing mTOR inhibitor Torin-1 hindered growth,motility,invasion,and survival of CoCSCs in vitro,and suppressed tumor growth in vivo with a concomitant reduction in vessel formation. Torin-1 also affected the expression of markers for cell proliferation,angio-/lympho-genesis,and stemness in vivo,including Ki67,DLL1,DLL4,Notch,Lgr5,and CD44. Importantly,Torin-1 did not affect the survival of normal colon stem cells in vivo,suggesting its selectivity towards cancer cells. Thus,we propose Torin-1 as a powerful drug candidate for metastatic CRC therapy.
View Publication
产品类型:
产品号#:
73492
产品名:
Torin 1
文献
Badja C et al. (DEC 2014)
Stem cells translational medicine 3 12 1467--72
Efficient and cost-effective generation of mature neurons from human induced pluripotent stem cells.
For years,our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanaka's group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular,much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time-consuming and generate limited amounts of cells,hindering use on a large scale. We describe a feeder-free method relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. Four days after induction,expression of markers of the neurectoderm lineage is detectable. Between 4 and 7 days,neuronal precursors can be expanded,frozen,and thawed without loss of proliferation and differentiation capacities or further differentiated. Terminal differentiation into the different subtypes of mature neurons found in the human brain were observed. At 6-35 days after induction,cells express typical voltage-gated and ionotrophic receptors for GABA,glycine,and acetylcholine. This specific and efficient single-step strategy in a chemically defined medium allows the production of mature neurons in 20-40 days with multiple applications,especially for modeling human pathologies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Shen S-C et al. (DEC 2014)
PloS one 9 12 e114990
Susceptibility of human embryonic stem cell-derived neural cells to Japanese encephalitis virus infection.
Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells,including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses,such as Japanese encephalitis virus (JEV),provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition,glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast,only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition,functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover,we discover that vimentin intermediate filament,reported as a putative neurovirulent JEV receptor,is highly expressed in NPCs and glial cells,but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally,we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tateno H et al. (MAY 2015)
Stem Cell Reports 4 5 811--820
Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein
The application of stem-cell-based therapies in regenerative medicine is hindered by the tumorigenic potential of residual human pluripotent stem cells. Previously,we identified a human pluripotent stem-cell-specific lectin probe,called rBC2LCN,by comprehensive glycome analysis using high-density lectin microarrays. Here we developed a recombinant lectin-toxin fusion protein of rBC2LCN with a catalytic domain of Pseudomonas aeruginosa exotoxin A,termed rBC2LCN-PE23,which could be expressed as a soluble form from the cytoplasm of Escherichia coli and purified to homogeneity by one-step affinity chromatography. rBC2LCN-PE23 bound to human pluripotent stem cells,followed by its internalization,allowing intracellular delivery of a cargo of cytotoxic protein. The addition of rBC2LCN-PE23 to the culture medium was sufficient to completely eliminate human pluripotent stem cells. Thus,rBC2LCN-PE23 has the potential to contribute to the safety of stem-cell-based therapies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chen RJ et al. (NOV 2015)
PloS one 10 11 e0142554
Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States.
Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report,we employ electron,immunofluorescence microscopy,and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 $$g/$$g proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 $$g/$$g proteins) reported in human cancer cell lines. Moreover,we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states,similar to those naïve-like hPSCs,with increased glycogen synthesis. Furthermore,we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus,our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions.
View Publication