P. Bank'o et al. (may 2019)
Journal of hematology oncology 12 1 48
Technologies for circulating tumor cell separation from whole blood.
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis,namely,providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer,several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare,CTC methods are currently mainly used for research purposes,and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity,CTC separation from the blood,and a lack of thorough clinical validation. Therefore,the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits,we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages,use,and significance. Technologies using whole blood samples utilize size-based,immunoaffinity-based,and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet,they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus,a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
View Publication
M. Pille et al. (Feb 2024)
Molecular Therapy. Methods & Clinical Development 32 1
Gene editing-based targeted integration for correction of Wiskott-Aldrich syndrome
Wiskott-Aldrich syndrome (WAS) is a severe X-linked primary immunodeficiency resulting from a diversity of mutations distributed across all 12 exons of the WAS gene. WAS encodes a hematopoietic-specific and developmentally regulated cytoplasmic protein (WASp). The objective of this study was to develop a gene correction strategy potentially applicable to most WAS patients by employing nuclease-mediated,site-specific integration of a corrective WAS gene sequence into the endogenous WAS chromosomal locus. In this study,we demonstrate the ability to target the integration of WAS 2-12 -containing constructs into intron 1 of the endogenous WAS gene of primary CD34 + hematopoietic stem and progenitor cells (HSPCs),as well as WASp-deficient B cell lines and WASp-deficient primary T cells. This intron 1 targeted integration (TI) approach proved to be quite efficient and restored WASp expression in treated cells. Furthermore,TI restored WASp-dependent function to WAS patient T cells. Edited CD34 + HSPCs exhibited the capacity for multipotent differentiation to various hematopoietic lineages in vitro and in transplanted immunodeficient mice. This methodology offers a potential editing approach for treatment of WAS using patient’s CD34 + cells.
View Publication
Maxwell CR et al. ( 2004)
Neuroscience 129 1 101--107
Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications.
OVERVIEW: All current antipsychotic medications work by binding to Gi-coupled dopamine (DA) D2 receptors. Such medications are thought to affect cellular function primarily by decreasing DA-mediated regulation of intracellular cyclic adenosine monophosphate (cAMP).However,several studies indicate that cAMP signal transduction abnormalities in schizophrenia may not be limited to D2-containing cells. The current study examines the potential of using non-receptor-based agents that modify intracellular signal transduction as potential antipsychotic medications. METHODS: The indirect DA agonist amphetamine has been used to model the auditory sensory processing deficits in schizophrenia. Such pharmacologically induced abnormalities are reversed by current antipsychotic treatments. This study examines the ability of the phosphodiesterase-4 inhibitor,rolipram,to reverse amphetamine-induced abnormalities in auditory-evoked potentials that are characteristic of schizophrenia. RESULTS: Rolipram reverses amphetamine-induced reductions in auditory-evoked potentials. CONCLUSION: This finding could lead to novel approaches to receptor-independent treatments for schizophrenia.
View Publication
产品类型:
产品号#:
73382
73384
产品名:
Rolipram
Rolipram
R. Gonzalez et al. (JAN 2013)
Scientific reports 3 1463
Deriving dopaminergic neurons for clinical use. A practical approach.
New small molecules that regulate the step-wise differentiation of human pluripotent stem cells into dopaminergic neurons have been identified. The steroid,guggulsterone,was found to be the most effective inducer of neural stem cells into dopaminergic neurons. These neurons are extensively characterized and shown to be functional. We believe this new approach offers a practical route to creating neurons of sufficient quality to be used to treat Parkinson's disease patients.
View Publication
D. C. Johnson et al. (AUG 2018)
Nature medicine 24 8 1151--1156
DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia.
Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) induce a lytic form of cell death called pyroptosis in mouse and human monocytes and macrophages1,2. In mouse myeloid cells,Dpp8/9 inhibition activates the inflammasome sensor Nlrp1b,which in turn activates pro-caspase-1 to mediate cell death3,but the mechanism of DPP8/9 inhibitor-induced pyroptosis in human myeloid cells is not yet known. Here we show that the CARD-containing protein CARD8 mediates DPP8/9 inhibitor-induced pro-caspase-1-dependent pyroptosis in human myeloid cells. We further show that DPP8/9 inhibitors induce pyroptosis in the majority of human acute myeloid leukemia (AML) cell lines and primary AML samples,but not in cells from many other lineages,and that these inhibitors inhibit human AML progression in mouse models. Overall,this work identifies an activator of CARD8 in human cells and indicates that its activation by small-molecule DPP8/9 inhibitors represents a new potential therapeutic strategy for AML.
View Publication