Garreta E et al. (APR 2016)
Biomaterials 98 64--78
Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts
Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands,targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features,and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall,the approach described here allows for the rapid generation of human cardiac grafts from hPSCs,in a total of 24 days,providing a suitable platform for cardiac engineering and disease modeling in the human setting.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ware CB et al. (APR 2009)
Cell stem cell 4 4 359--69
Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells.
Recent evidence indicates that mouse and human embryonic stem cells (ESCs) are fixed at different developmental stages,with the former positioned earlier. We show that a narrow concentration of the naturally occurring short-chain fatty acid,sodium butyrate,supports the extensive self-renewal of mouse and human ESCs,while promoting their convergence toward an intermediate stem cell state. In response to butyrate,human ESCs regress to an earlier developmental stage characterized by a gene expression profile resembling that of mouse ESCs,preventing precocious Xist expression while retaining the ability to form complex teratomas in vivo. Other histone deacetylase inhibitors (HDACi) also support human ESC self-renewal. Our results indicate that HDACi can promote ESC self-renewal across species,and demonstrate that ESCs can toggle between alternative states in response to environmental factors.
View Publication
产品类型:
产品号#:
72242
产品名:
丁酸钠(Sodium Butyrate)
文献
Bueno C et al. (SEP 2009)
Carcinogenesis 30 9 1628--37
Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells.
MLL rearrangements are hallmark genetic abnormalities in infant leukemia known to arise in utero. They can be induced during human prenatal development upon exposure to etoposide. We also hypothesize that chronic exposure to etoposide might render cells more susceptible to other genomic insults. Here,for the first time,human embryonic stem cells (hESCs) were used as a model to test the effects of etoposide on human early embryonic development. We addressed whether: (i) low doses of etoposide promote MLL rearrangements in hESCs and hESCs-derived hematopoietic cells; (ii) MLL rearrangements are sufficient to confer hESCs with a selective growth advantage and (iii) continuous exposure to low doses of etoposide induces hESCs to acquire other chromosomal abnormalities. In contrast to cord blood-derived CD34(+) and hESC-derived hematopoietic cells,exposure of undifferentiated hESCs to a single low dose of etoposide induced a pronounced cell death. Etoposide induced MLL rearrangements in hESCs and their hematopoietic derivatives. After long-term culture,the proportion of hESCs harboring MLL rearrangements diminished and neither cell cycle variations nor genomic abnormalities were observed in the etoposide-treated hESCs,suggesting that MLL rearrangements are insufficient to confer hESCs with a selective proliferation/survival advantage. However,continuous exposure to etoposide induced MLL breaks and primed hESCs to acquire other major karyotypic abnormalities. These data show that chronic exposure of developmentally early stem cells to etoposide induces MLL rearrangements and make hESCs more prone to acquire other chromosomal abnormalities than postnatal CD34(+) cells,linking embryonic genotoxic exposure to genomic instability.
View Publication
产品类型:
产品号#:
07800
07850
09600
09650
产品名:
氯化铵溶液
氯化铵溶液
StemSpan™ SFEM
StemSpan™ SFEM
文献
Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vaziri H et al. (MAY 2010)
Regenerative medicine 5 3 345--363
Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming.
AIM: To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS: An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2,OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length,telomerase activity and telomere-related gene expression. In addition,we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS: We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However,iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background,we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells,had telomerase activity,expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However,the clone EH3,with relatively high levels of telomerase activity,progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION: Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However,the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Male V et al. (OCT 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 7 3913--8
Immature NK cells, capable of producing IL-22, are present in human uterine mucosa.
NK cells are the dominant population of immune cells in the endometrium in the secretory phase of the menstrual cycle and in the decidua in early pregnancy. The possibility that this is a site of NK cell development is of particular interest because of the cyclical death and regeneration of the NK population during the menstrual cycle. To investigate this,we searched for NK developmental stages 1-4,based on expression of CD34,CD117,and CD94. In this study,we report that a heterogeneous population of stage 3 NK precursor (CD34(-)CD117(+)CD94(-)) and mature stage 4 NK (CD34(-)CD117(-/+)CD94(+)) cells,but not multipotent stages 1 and 2 (CD34(+)),are present in the uterine mucosa. Cells within the uterine stage 3 population are able to give rise to mature stage 4-like cells in vitro but also produce IL-22 and express RORC and LTA. We also found stage 3 cells with NK progenitor potential in peripheral blood. We propose that stage 3 cells are recruited from the blood to the uterus and mature in the uterine microenvironment to become distinctive uterine NK cells. IL-22 producers in this population might have a physiological role in this specialist mucosa dedicated to reproduction.
View Publication
产品类型:
产品号#:
产品名:
文献
Sokolov MV et al. (JAN 2012)
PLoS ONE 7 2 e31028
Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells
MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However,the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here,by using system biology approaches,we show for the first time,that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes),and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-,cell cycle-,ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response,and identify novel molecular targets of radiation in hESC.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Atari M et al. (JUL 2012)
Journal of cell science 125 Pt 14 3343--56
Dental pulp of the third molar: a new source of pluripotent-like stem cells.
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However,no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work,we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF,EGF and PDGF. These cells are SSEA4(+),OCT3/4(+),NANOG(+),SOX2(+),LIN28(+),CD13(+),CD105(+),CD34(-),CD45(-),CD90(+),CD29(+),CD73(+),STRO1(+) and CD146(-),and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly,DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm,endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4,GATA6,MIXL1,NANOG,OCT3/4,SOX1 and SOX2 to determine the degree of similarity between DPPSCs,EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs,hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages,they represent an easily accessible source of stem cells,which opens a range of new possibilities for regenerative medicine.
View Publication
产品类型:
产品号#:
产品名:
文献
Amita M et al. (MAR 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 13 E1212--E1221
Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4
Human ES cells (hESC) exposed to bone morphogenic protein 4 (BMP4) in the absence of FGF2 have become widely used for studying trophoblast development,but the soundness of this model has been challenged by others,who concluded that differentiation was primarily toward mesoderm rather than trophoblast. Here we confirm that hESC grown under the standard conditions on a medium conditioned by mouse embryonic fibroblasts in the presence of BMP4 and absence of FGF2 on a Matrigel substratum rapidly convert to an epithelium that is largely KRT7+ within 48 h,with minimal expression of mesoderm markers,including T (Brachyury). Instead,they begin to express a series of trophoblast markers,including HLA-G,demonstrate invasive properties that are independent of the continued presence of BMP4 in the medium,and,over time,produce extensive amounts of human chorionic gonadotropin,progesterone,placental growth factor,and placental lactogen. This process of differentiation is not dependent on conditioning of the medium by mouse embryonic fibroblasts and is accelerated in the presence of inhibitors of Activin and FGF2 signaling,which at day 2 provide colonies that are entirely KRT7+ and in which the majority of cells are transiently CDX2+. Colonies grown on two chemically defined media,including the one in which BMP4 was reported to drive mesoderm formation,also differentiate at least partially to trophoblast in response to BMP4. The experiments demonstrate that the in vitro BMP4/hESC model is valid for studying the emergence and differentiation of trophoblasts.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Denè et al. (SEP 2013)
Clinical chemistry 59 9 1384--92
Capture of viable circulating tumor cells in the liver of colorectal cancer patients.
BACKGROUND The incidence and number of circulating tumor cells (CTCs) in the peripheral blood of colorectal cancer patients are lower than in other cancer types,which may point to a particular biology of colorectal cancer affecting CTC detection. METHODS We detected CTCs in the peripheral and mesenteric blood of colorectal cancer patients by use of 2 independent technologies on the basis of different biological properties of colon cancer cells. Seventy-five patients diagnosed with localized (M0,n = 60) and metastatic (M1,n = 15) colorectal cancer were included. Peripheral and mesenteric blood samples were collected before tumor resection. We performed CTC enumeration with an EpCAM-independent enrichment method followed by the Epispot assay that detected only viable CK19-releasing CTCs. In parallel,we used the FDA-cleared EpCAM-dependent CellSearch® as the reference method. RESULTS The enumeration of CK19-releasing cells by the CK19-Epispot assay revealed viable CTCs in 27 of 41 (65.9%) and 41 of 74 (55.4%) (P = 0.04) patients in mesenteric and peripheral blood,respectively,whereas CellSearch detected CTCs in 19 of 34 (55.9%) and 20 of 69 (29.0%) (P = 0.0046) patients. In mesenteric blood,medians of 4 (range 0-247) and 2.7 CTCs (range 0-286) were found with Epispot and CellSearch (P = 0.2),respectively,whereas in peripheral blood,Epispot and CellSearch detected a median of 1.2 (range 0-92) and 0 CTCs (range 0-147) (P = 0.002). CONCLUSIONS A considerable portion of viable CTCs detectable by the Epispot assay are trapped in the liver as the first filter organ in CRC patients.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
文献
Koehler KR et al. (AUG 2013)
Nature 500 7461 217--21
Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture.
The inner ear contains sensory epithelia that detect head movements,gravity and sound. It is unclear how to develop these sensory epithelia from pluripotent stem cells,a process that will be critical for modelling inner ear disorders or developing cell-based therapies for profound hearing loss and balance disorders. So far,attempts to derive inner ear mechanosensitive hair cells and sensory neurons have resulted in inefficient or incomplete phenotypic conversion of stem cells into inner-ear-like cells. A key insight lacking from these previous studies is the importance of the non-neural and preplacodal ectoderm,two critical precursors during inner ear development. Here we report the stepwise differentiation of inner ear sensory epithelia from mouse embryonic stem cells (ESCs) in three-dimensional culture. We show that by recapitulating in vivo development with precise temporal control of signalling pathways,ESC aggregates transform sequentially into non-neural,preplacodal and otic-placode-like epithelia. Notably,in a self-organized process that mimics normal development,vesicles containing prosensory cells emerge from the presumptive otic placodes and give rise to hair cells bearing stereocilia bundles and a kinocilium. Moreover,these stem-cell-derived hair cells exhibit functional properties of native mechanosensitive hair cells and form specialized synapses with sensory neurons that have also arisen from ESCs in the culture. Finally,we demonstrate how these vesicles are structurally and biochemically comparable to developing vestibular end organs. Our data thus establish a new in vitro model of inner ear differentiation that can be used to gain deeper insight into inner ear development and disorder.
View Publication