Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells.
Glioblastoma multiforme is the most malignant type of primary brain tumor with a poor prognosis. These tumors consist of a heterogeneous population of malignant cells,including well-differentiated tumor cells and less differentiated cells with stem cell properties. These cancer stem cells,known as brain tumor initiating cells,likely contribute to glioma recurrence,as they are highly invasive,mobile,resistant to radiation and chemotherapy,and have the capacity to self-renew. Glioblastoma tumor cells release excitotoxic levels of glutamate,which may be a key process in the death of peritumoral neurons,formation of necrosis,local inflammation,and glioma-related seizures. Moreover,elevated glutamate levels in the tumor may act in paracrine and autocrine manner to activate glutamate receptors on glioblastoma tumor cells,resulting in proliferation and invasion. Using a previously described culturing condition that selectively promotes the growth of brain tumor initiating cells,which express the stem cell markers nestin and SOX-2,we characterize the expression of α-amino-3-hydroxy-5-methyl-4-isozolepropionic acid (AMPA)-type glutamate receptor subunits in brain tumor initiating cells derived from glioblastomas. Here we show for the first time that glioblastoma brain tumor initiating cells express high concentrations of functional calcium-permeable AMPA receptors,compared to the differentiated tumor cultures consisting of non-stem cells. Up-regulated calcium-permeable AMPA receptor expression was confirmed by immunoblotting,immunocytochemistry,and intracellular calcium imaging in response to specific agonists. Our findings raise the possibility that glutamate secretion in the GBM tumor microenvironment may stimulate brain tumor derived cancer stem cells.
View Publication
产品类型:
产品号#:
05750
产品名:
NeuroCult™ NS-A 基础培养基(人)
文献
Herreros-Villanueva M et al. ( 2013)
Oncogenesis 2 e61
SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.
SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance,in which it impairs cell growth and tumorigenicity. However,the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report,we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However,ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction,whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1,ESA and CD44. Importantly,we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover,we show that SOX2 directly binds to the Snail,Slug and Twist promoters,leading to a loss of E-Cadherin and ZO-1 expression. Taken together,our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype,suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Trilck et al. ( 2013)
Orphanet journal of rare diseases 8 144
Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks.
BACKGROUND: Niemann-Pick type C1 disease (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. In this lysosomal storage disorder the intracellular transport and sequestration of several lipids like cholesterol is severely impaired,resulting in an accumulation of lipids in late endosomes and lysosomes. The neurological manifestation of the disease is caused by dysfunction and cell death in the central nervous system. Several animal models were used to analyze the impaired pathways. However,the underlying pathogenic mechanisms are still not completely understood and the genetic variability in humans cannot be reflected in these models. Therefore,a human model using patient-specific induced pluripotent stem cells provides a promising approach. METHODS: We reprogrammed human fibroblasts from a NPC1 patient and a healthy control by retroviral transduction with Oct4,Klf4,Sox2 and c-Myc. The obtained human induced pluripotent stem cells (hiPSCs) were characterized by immunocytochemical analyses. Neural progenitor cells were generated and patch clamp recordings were performed for a functional analysis of derived neuronal cells. Filipin stainings and the Amplex Red assay were used to demonstrate and quantify cholesterol accumulation. RESULTS: The hiPSCs expressed different stem cell markers,e.g. Nanog,Tra-1-81 and SSEA4. Using the embryoid body assay,the cells were differentiated in cells of all three germ layers and induced teratoma in immunodeficient mice,demonstrating their pluripotency. In addition,neural progenitor cells were derived and differentiated into functional neuronal cells. Patch clamp recordings revealed voltage dependent channels,spontaneous action potentials and postsynaptic currents. The accumulation of cholesterol in different tissues is the main hallmark of NPC1. In this study we found an accumulation of cholesterol in fibroblasts of a NPC1 patient,derived hiPSCs,and neural progenitor cells,but not in cells derived from fibroblasts of a healthy individual. These findings were quantified by the Amplex Red assay,demonstrating a significantly elevated cholesterol level in cells derived from fibroblasts of a NPC1 patient. CONCLUSIONS: We generated a neuronal model based on induced pluripotent stem cells derived from patient fibroblasts,providing a human in vitro model to study the pathogenic mechanisms of NPC1 disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Ohtsuka T et al. (JAN 2006)
Molecular and cellular neurosciences 31 1 109--22
Visualization of embryonic neural stem cells using Hes promoters in transgenic mice.
In the central nervous system,neural stem cells proliferate in the ventricular zone (VZ) and sequentially give rise to both neurons and glial cells in a temporally and spatially regulated manner,suggesting that stem cells may differ from one another in different brain regions and at different developmental stages. For the purpose of marking and purifying neural stem cells to ascertain whether such differences exist,we generated transgenic mice using promoters from Hes genes (pHes1 or pHes5) to drive expression of destabilized enhanced green fluorescent protein. In the developing brains of these transgenic mice,GFP expression was restricted to undifferentiated cells in the VZ,which could asymmetrically produce a Numb-positive neuronal daughter and a GFP-positive progenitor cell in clonal culture,indicating that they retain the capacity to self-renew. Our results suggest that pHes-EGFP transgenic mice can be used to explore similarities and differences among neural stem cells during development.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Takahashi K et al. (NOV 2007)
Cell 131 5 861--72
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells,capable of germline transmission,from mouse somatic cells by transduction of four defined transcription factors. Here,we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4,Sox2,Klf4,and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology,proliferation,surface antigens,gene expression,epigenetic status of pluripotent cell-specific genes,and telomerase activity. Furthermore,these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
View Publication
产品类型:
产品号#:
72602
85850
85857
产品名:
OAC1
mTeSR™1
mTeSR™1
文献
Grajales L et al. (APR 2010)
Journal of molecular and cellular cardiology 48 4 735--45
Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential,previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage,culture milieu,and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin(-) BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine+2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA+5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA,39% and LS,28%). A second sequential enrichment for the dihydropyridine receptor subunit alpha2delta1 (DHPR-alpha2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1(+) enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca(2+) transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion,IP CD117/Sca-1(+) murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore,temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-alpha2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.
View Publication
产品类型:
产品号#:
19771
产品名:
EasySep™ 小鼠间充质干/祖细胞富集试剂盒
文献
Isnardi I et al. (JUN 2010)
Blood 115 24 5026--36
Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.
Complement receptor 2-negative (CR2/CD21(-)) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However,the physiology of CD21(-/lo) B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21(-/lo) B cells in their blood. A majority of CD21(-/lo) B cells from RA and CVID patients expressed germline autoreactive antibodies,which recognized nuclear and cytoplasmic structures. In addition,these B cells were unable to induce calcium flux,become activated,or proliferate in response to B-cell receptor and/or CD40 triggering,suggesting that these autoreactive B cells may be anergic. Moreover,gene array analyses of CD21(-/lo) B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus,CD21(-/lo) B cells contain mostly autoreactive unresponsive clones,which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
文献
Leung HW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 165--72
Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures.
One of the factors that can impact human embryonic stem cell expansion in stirred microcarrier culture reactors is mechanical stress caused by agitation. Therefore,we have investigated the effects of agitation on human embryonic stem cell growth and expression of pluripotent markers. Agitation of HES-2 cell line in microcarrier cultures in stirred spinner and agitated six-well plates did not affect expression of pluripotent markers,cell viability,and cell doubling times even after seven passages. However,HES-3 cell line was found to be shear sensitive,showing downregulation of three pluripotent markers Oct-4,mAb 84,and Tra-1-60,and lower cell densities in agitated as compared with static cultures,even after one passage. Cell viability was unaffected. The HES-3-agitated cultures showed increased expression of genes and proteins of the three germ layers. We were unable to prevent loss of pluripotent markers or restore doubling times in agitated HES-3 microcarrier cultures by addition of five different known cell protective polymers. In addition,the human induced pluripotent cell line IMR90 was also shown to differentiate in agitated conditions. These results indicate that the effect of agitation on cell growth and differentiation is cell line specific. We assume that the changes in the growth and differentiation of the agitation-sensitive (HES-3) cell line do not result from the effect of shear stress directly on cell viability,but rather by signaling effects that influence the cells to differentiate resulting in slower growth.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Xu C et al. (JAN 2011)
Regenerative medicine 6 1 53--66
Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells.
AIM Human embryonic stem cells (hESCs) represent a novel cell source to treat diseases such as heart failure and for use in drug screening. In this study,we aim to promote efficient generation of cardiomyocytes from hESCs by combining the current optimal techniques of controlled growth of undifferentiated cells and specific induction for cardiac differentiation. We also aim to examine whether these methods are scalable and whether the differentiated cells can be cryopreserved. METHODS & RESULTS hESCs were maintained without conditioned medium or feeders and were sequentially treated with activin A and bone morphogenetic protein-4 in a serum-free medium. This led to differentiation into cell populations containing high percentages of cardiomyocytes. The differentiated cells expressed appropriate cardiomyocyte markers and maintained contractility in culture,and the majority of the cells displayed working chamber (atrial and ventricular) type electrophysiological properties. In addition,the cell growth and differentiation process was adaptable to large culture formats. Moreover,the cardiomyocytes survived following cryopreservation,and viable cardiac grafts were detected after transplantation of cryopreserved cells into rat hearts following myocardial infarctions. CONCLUSION These results demonstrate that cardiomyocytes of high quality can be efficiently generated and cryopreserved using hESCs maintained in serum-free medium,a step forward towards the application of these cells to human clinical use or drug discovery.
View Publication
Song DH et al. (AUG 2000)
Journal of Biological Chemistry 275 31 23790--97
Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells
Protein kinase CK2 (formerly casein kinase II) is a serine/threonine kinase overexpressed in many human tumors,transformed cell lines,and rapidly proliferating tissues. Recent data have shown that many cancers involve inappropriate reactivation of Wnt signaling through ectopic expression of Wnts themselves,as has been seen in a number of human breast cancers,or through mutation of intermediates in the Wnt pathway,such as adenomatous polyposis coli or beta-catenin,as described in colon and other cancers. Wnts are secreted factors that are important in embryonic development,but overexpression of certain Wnts,such as Wnt-1,leads to proliferation and transformation of cells. We report that upon stable transfection of Wnt-1 into the mouse mammary epithelial cell line C57MG,morphological changes and increased proliferation are accompanied by increased levels of CK2,as well as of beta-catenin. CK2 and beta-catenin co-precipitate with the Dvl proteins,which are Wnt signaling intermediates. A major phosphoprotein of the size of beta-catenin appears in in vitro kinase reactions performed on the Dvl immunoprecipitates. In vitro translated beta-catenin,Dvl-2,and Dvl-3 are phosphorylated by CK2. The selective CK2 inhibitor apigenin blocks proliferation of Wnt-1-transfected cells,abrogates phosphorylation of beta-catenin,and reduces beta-catenin and Dvl protein levels. These results demonstrate that endogenous CK2 is a positive regulator of Wnt signaling and growth of mammary epithelial cells.
View Publication