Hawkins F et al. (MAY 2017)
The Journal of clinical investigation
Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells.
It has been postulated that during human fetal development,all cells of the lung epithelium derive from embryonic,endodermal,NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However,this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity,these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support,this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively,when recombined with fetal mouse lung mesenchyme,the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved,stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted,patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Razaq MA et al. (MAR 2017)
British journal of haematology 176 6 971--983
A molecular roadmap of definitive erythropoiesis from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are being considered for use in understanding haematopoietic disorders and as a potential source of in vitro manufactured red cells. Here,we show that hiPSCs are able to recapitulate various stages of developmental erythropoiesis. We show that primitive erythroblasts arise first,express CD31(+) with CD235a(+),embryonic globins and red cell markers,but fail to express the hallmark red cell transcripts of adult erythropoiesis. When hiPSC-derived CD45(+) CD235a(-) haematopoietic progenitors are isolated on day 12 and further differentiated on OP9 stroma,they selectively express CD36(+) and CD235a(+),adult erythroid transcripts for transcription factors (e.g.,BCL11A,KLF1) and fetal/adult globins (HBG1/2,HBB). Importantly,hiPSC- and cord-derived CD36(+) CD235a(+) erythroblasts show a striking homology by transcriptome array profiling (only 306 transcripts with a 2Log fold change<1textperiodcentered5- or 2textperiodcentered8-fold). Phenotypic and transcriptome profiling of CD45(+) CD117(+) CD235a(+) pro-erythroblasts and terminally differentiated erythroblasts is also provided,including evidence of a HbF (fetal) to HbA (adult) haemoglobin switch and enucleation,that mirrors their definitive erythroblast cord-derived counterparts. These findings provide a molecular roadmap of developmental erythropoiesis from hiPSC sources at several critical stages,but also helps to inform on their use for clinical applications and modelling human haematopoietic disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sun MZ et al. (NOV 2013)
Neuro-Oncology 15 11 1518--1531
BACKGROUND Mechanisms of glioma invasion remain to be fully elucidated. Glioma cells within glioblastoma multiforme (GBM) range from well-differentiated tumor cells to less-differentiated brain tumor-initiating cells (BTICs). The β2-subunit of Na(+)/K(+)-ATPase,called the adhesion molecule on glia (AMOG),is highly expressed in normal glia but is thought to be universally downregulated in GBM. To test our hypothesis that expression of AMOG is heterogeneous in GBM and confers a less invasive phenotype,we compared it between BTICs and differentiated cells from patient-matched GBM and then tested GBM invasion in vitro after AMOG overexpression. METHODS Immunohistochemistry,immunoblotting,and real-time PCR were used to characterize AMOG protein and mRNA expression in tumor samples,BTICs,and differentiated cells. Matrigel invasion assay,scratch assay,and direct cell counting were used for testing in vitro invasion,migration,and proliferation,respectively. RESULTS While AMOG expression is heterogeneous in astrocytomas of grades II-IV,it is lost in most GBM. BTICs express higher levels of AMOG mRNA and protein compared with patient-matched differentiated tumor cells. Overexpression of AMOG decreased GBM cell and BTIC invasion without affecting migration or proliferation. Knockdown of AMOG expression in normal human astrocytes increased invasion. CONCLUSIONS AMOG expression inhibits GBM invasion. Its downregulation increases invasion in glial cells and may also represent an important step in BTIC differentiation. These data provide compelling evidence implicating the role of AMOG in glioma invasion and provide impetus for further investigation.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
P. Li et al. (mar 2022)
Journal for immunotherapy of cancer 10 3
1$\alpha$,25(OH)2D3 reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells.
BACKGROUND Epidemiological surveys have revealed that low serum vitamin D level was correlated with increased risk of tumors. Dysfunctional T cells in patients with tumor are characterized as exhausted with high levels of immune checkpoint receptors (ICRs). However,whether the reduced level of vitamin D in patients with cancer correlates with cytotoxic T-cell exhaustion is unknown. METHODS Periphery blood samples from 172 patients with non-small cell lung cancer (NSCLC) were prospectively collected. Patients with NSCLC received one course of intravenous docetaxel (75 mg/m2) followed by treatment with or without rocaltrol at a dose of 0.5-2.0 µg/day for total of 3 weeks. We performed phenotypical and functional analysis of T-cell through flow cytometry. Vitamin D receptor (VDR) knockout and overexpression CD8+ and V$\delta$2+ T cells were constructed using Cas9-gRNA targeted and overexpressing approaches to identify 1$\alpha$,25(OH)2D3/VDR-mediated transcription regulation for ICRs or antitumor activity in T cells. RESULTS We show that serum level of vitamin D is negatively correlated with expression of programmed cell death-1 (PD-1),T-cell immunoreceptor with Ig and ITIM domains (TIGIT),and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3),but positively correlated with CD28 expression on CD8+ and V$\gamma$9V$\delta$2+ T cells in patients with NSCLC. 1$\alpha$,25(OH)2D3,the active form of vitamin D,promotes the nuclear translocation of VDR,which binds to the promoter region of Pdcd1,Tim3,and Tigit genes and inhibits their expression. Besides,1$\alpha$,25(OH)2D3 pretreatment also promotes the methylation of CpG island in the promoter region of the Pdcd1 gene and increases H3K27 acetylation at the promoter region of the Cd28 gene,which leads to surface PD-1 downregulation and CD28 upregulation,respectively. We further reveal that VDR-mediated Ca2+ influx enhanced expression of Th1 cytokines via T-cell receptor activation. Functionally,1$\alpha$,25(OH)2D3 pretreated CD8+ T cells or V$\gamma$9V$\delta$2+ T cells showed increased Th1 cytokine production and enhanced antitumor immunity. Finally,oral 1$\alpha$,25(OH)2D3 could also decrease expression of PD-1,Tim-3,TIGIT and increase expression of CD28,resulting in cytokine production (associated with antitumor immunity) by cytotoxic T cells of patients with NSCLC. CONCLUSIONS Our findings uncover the pleiotropic effects of 1$\alpha$,25(OH)2D3 in rescuing the exhausted phenotype of human cytotoxic T cells in patients with tumor and in promoting their antitumor immunity. TRIAL REGISTRATION NUMBER ChiCTR2100051135.
View Publication
产品类型:
产品号#:
19255
产品名:
EasySep™人Gamma/Delta T细胞分选试剂盒
文献
E. Drent et al. (jul 2019)
Clinical cancer research : an official journal of the American Association for Cancer Research 25 13 4014--4025
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.
PURPOSE Targeting nonspecific,tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However,decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here,we demonstrate the prime importance of the type of intracellular signaling on the function of low-affinity CAR-T cells. EXPERIMENTAL DESIGN We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. RESULTS We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (Kd {\textless} 1.9 × 10-6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity,preservation of a central memory phenotype,and significantly improved in vivo antitumor function,while preserving their ability to discriminate target antigen density. CONCLUSIONS A combinatorial costimulatory design allows the use of very low-affinity binding domains (Kd {\textless} 1 mumol/L) for the construction of safe but also optimally effective CAR-T cells. Thus,very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.
View Publication
产品类型:
产品号#:
04534
04544
17856
17856RF
产品名:
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
文献
S. K. Mittal et al. (jun 2019)
Stem cells translational medicine
Mesenchymal Stromal Cells Modulate Corneal Alloimmunity via Secretion of Hepatocyte Growth Factor.
Mesenchymal stromal cells (MSCs) are multipotent stem cells that participate in tissue repair and posses considerable immunomodulatory potential. MSCs have been shown to promote allograft survival,yet the mechanisms behind this phenomenon have not been fully defined. Here,we investigate the capacity of MSCs to suppress the allogeneic immune response by secreting the pleiotropic molecule hepatocyte growth factor (HGF). Using an in vivo mouse model of corneal transplantation,we report that MSCs promote graft survival in an HGF-dependent manner. Moreover,our data indicate that topically administered recombinant HGF (1) suppresses antigen-presenting cell maturation in draining lymphoid tissue,(2) limits T-helper type-1 cell generation,(3) decreases inflammatory cell infiltration into grafted tissue,and (4) is itself sufficient to promote transplant survival. These findings have potential translational implications for the development of HGF-based therapeutics. Stem Cells Translational Medicine 2019.
View Publication
产品类型:
产品号#:
05513
产品名:
MesenCult™ 扩增试剂盒 (小鼠)
文献
Mou H et al. ( 2016)
Stem Cell 19 4 217--231
Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells cell stem cell dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells.
Graphical Abstract Highlights d SMAD activity is active in suprabasal cells but is weaker in basal epithelial cells d SMAD signaling activity correlates with mucociliary differentiation in the airway d Dual TGFb/BMP inhibition prevents spontaneous differentiation in culture d Dual TGFb/BMP inhibition allows prolonged culture of diverse epithelial basal cells Correspondence jrajagopal@partners.org In Brief Mou et al. show that small-molecule-mediated SMAD signaling inhibition allows prolonged feeder-free culture of diverse functional epithelial basal stem cells in a 2D format. This methodology provides a facile patient-specific epithelial disease modeling platform,as shown by the expansion of airway epithelium from non-invasively obtained specimens from cystic fibrosis patients.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
Mehta A et al. (SEP 2011)
Cardiovascular Research 91 4 577--86
Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells.
AIMS: Generation of human induced pluripotent stem cell (hiPSC) lines by reprogramming of fibroblast cells with virus-free methods offers unique opportunities for translational cardiovascular medicine. The aim of the study was to reprogramme fibroblast cells to hiPSCs and to study cardiomyogenic properties and ion channel characteristics of the virus-free hiPSC-derived cardiomyocytes. METHODS AND RESULTS: The hiPSCs generated by episomal vectors generated teratomas in severe combined immunodeficient mice,readily formed embryoid bodies,and differentiated into cardiomyocytes with comparable efficiency to human embryonic stem cells. Temporal gene expression of these hiPSCs indicated that differentiation of cardiomyocytes was initiated by increasing expression of cardio/mesodermal markers followed by cardiac-specific transcription factors,structural,and ion channel genes. Furthermore,the cardiomyocytes showed characteristic cross-striations of sarcomeric proteins and expressed calcium-handling and ion channel proteins,confirming their cardiac ontogeny. Microelectrode array recordings established the electrotonic development of a functional syncytium that responded predictably to pharmacologically active drugs. The cardiomyocytes showed a chronotropic dose-response (0.1-10 µM) to isoprenaline and Bay K 8644. Furthermore,carbamycholine (5 µM) suppressed the response to isoprenaline,while verapamil (2.5 µM) blocked Bay K 8644-induced inotropic activity. Moreover,verapamil (1 µM) reduced the corrected field potential duration by 45%,tetrodotoxin (10 µM) shortened the minimal field potential by 40%,and E-4031 (50 nM) prolonged field repolarization. CONCLUSION: Virus-free hiPSCs differentiate efficiently into cardiomyocytes with cardiac-specific molecular,structural,and functional properties that recapitulate the developmental ontogeny of cardiogenesis. These results,coupled with the potential to generate patient-specific hiPSC lines,hold great promise for the development of an in vitro platform for drug pharmacogenomics,disease modelling,and regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Blackmore DG et al. (JAN 2012)
Scientific reports 2 250
Growth hormone responsive neural precursor cells reside within the adult mammalian brain.
The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice,while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover,gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice,resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells,and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Falso MJS et al. (MAR 2012)
Anticancer research 32 3 733--8
Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin.
BACKGROUND: Recurrence is a common problem in bladder cancer; this has been attributed to cancer stem cells. In this study,we characterized potential cancer stem cell populations isolated from three cell lines that demonstrate different responses to cisplatin. MATERIALS AND METHODS: The ALDEFLUOR® assay was used to isolate cells from TCCSUP,T24,and 5637 cell lines,and these cells were evaluated for their ability to form colonies,differentiate,migrate and invade. RESULTS: The cell lines demonstrate a spectrum of aldehyde dehydrogenase high (ALDH(High)) populations that correlate with resistance to cisplatin. In the two resistant cell lines,T24 and 5637,the ALDH(High) cells demonstrate increased colony formation,migration,invasion,and ability to differentiate. The resistant T24 and 5637 cell lines may serve as models to investigate alternative therapies for bladder cancer.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Chang K-A et al. ( 2012)
Neurochemistry international 61 6 885--891
Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer's disease.
Recent studies have proposed that chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. However,the effect of antidepressants on fetal neural stem cells (NSCs) has not been well defined. Our study shows the dose-dependent effects of fluoxetine on the proliferation and neural differentiation of NSCs. Fluoxetine,even at nanomolar concentrations,stimulated proliferation of NSCs and increased the number of βIII-tubulin (Tuj 1)- and neural nucleus marker (NeuN)-positive cells,but not glial fibrillary acidic protein (GFAP)-positive cells. These results suggest that fluoxetine can enhance neuronal differentiation. In addition,fluoxetine has protective effects against cell death induced by oligomeric amyloid beta (Aβ(42)) peptides. Taken together,these results clearly show that fluoxetine promotes both the proliferation and neuronal differentiation of NSCs and exerts protective effects against Aβ(42)-induced cytotoxicities in NSCs,which suggest that the use of fluoxetine is applicable for cell therapy for various neurodegenerative diseases,such as Alzheimer's and Parkinson's diseases by its actions in NSCs.
View Publication
产品类型:
产品号#:
产品名:
文献
Vilchez D et al. (SEP 2012)
Nature 489 7415 304--308
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
Embryonic stem cells can replicate continuously in the absence of senescence and,therefore,are immortal in culture. Although genome stability is essential for the survival of stem cells,proteome stability may have an equally important role in stem-cell identity and function. Furthermore,with the asymmetric divisions invoked by stem cells,the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. Therefore,a firm understanding of how stem cells maintain their proteome is of central importance. Here we show that human embryonic stem cells (hESCs) exhibit high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11 (known as RPN-6 in Caenorhabditis elegans) and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. FOXO4,an insulin/insulin-like growth factor-I (IGF-I) responsive transcription factor associated with long lifespan in invertebrates,regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Proteasome inhibition in hESCs affects the expression of pluripotency markers and the levels of specific markers of the distinct germ layers. Our results suggest a new regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates to hESC function and identity.
View Publication