Marchetto MC BH et al. (JUL 2016)
Molecular psychiatry Mol Psychiatry.
Altered proliferation and networks in neural cells derived from idiopathic autistic individuals
Autism spectrum disorders (ASD) are common,complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies,brain pathology and imaging,but a major impediment to testing ASD hypotheses is the lack of human cell models. Here,we reprogrammed fibroblasts to generate induced pluripotent stem cells,neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly,defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1),a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Abdelwahab SF et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 25 15006--10
HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses.
CD4+ T cells are required for immunity against many viral infections,including HIV-1 where a positive correlation has been observed between strong recall responses and low HIV-1 viral loads. Some HIV-1-specific CD4+ T cells are preferentially infected with HIV-1,whereas others escape infection by unknown mechanisms. One possibility is that some CD4+ T cells are protected from infection by the secretion of soluble HIV-suppressive factors,although it is not known whether these factors are produced during primary antigen-specific responses. Here,we show that soluble suppressive factors are produced against CXCR4 and CCR5 isolates of HIV-1 during the primary immune response of human CD4+ T cells. This activity requires antigenic stimulation of naïve CD4+ T cells. One anti-CXCR4 factor is macrophage-derived chemokine (chemokine ligand 22,CCL22),and anti-CCR5 factors include macrophage inflammatory protein-1 alpha (CCL3),macrophage inflammatory protein-1 beta (CCL4),and RANTES (regulated upon activation of normal T cells expressed and secreted) (CCL5). Intracellular staining confirms that CD3+CD4+ T cells are the source of the prototype HIV-1-inhibiting chemokines CCL22 and CCL4. These results show that CD4+ T cells secrete an evolving HIV-1-suppressive activity during the primary immune response and that this activity is comprised primarily of CC chemokines. The data also suggest that production of such factors should be considered in the design of vaccines against HIV-1 and as a mechanism whereby the host can control infections with this virus.
View Publication
产品类型:
产品号#:
09500
09600
09650
产品名:
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Fang H et al. (APR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 8 4966--71
Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T cells.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans,the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-,strain-,and species-specific,which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line,Jurkat,is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells,whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover,anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well,cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT,but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically,anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells,thereby blocking functions that are pivotal in the regulation of immune responses.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Piccirillo SGM et al. (DEC 2006)
Nature 444 7120 761--5
Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.
Transformed,oncogenic precursors,possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours,have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs),amongst which BMP4 elicits the strongest effect,trigger a significant reduction in the stem-like,tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly,in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation,and increased expression of markers of neural differentiation,with no effect on cell viability. The concomitant reduction in clonogenic ability,in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP-BMPR signalling system--which controls the activity of normal brain stem cells--may also act as a key inhibitory regulator of tumour-initiating,stem-like cells from GBMs and the results also identify BMP4 as a novel,non-cytotoxic therapeutic effector,which may be used to prevent growth and recurrence of GBMs in humans.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Qin H et al. (FEB 2007)
The Journal of biological chemistry 282 8 5842--52
Regulation of apoptosis and differentiation by p53 in human embryonic stem cells.
The essentially infinite expansion potential and pluripotency of human embryonic stem cells (hESCs) makes them attractive for cell-based therapeutics. In contrast to mouse embryonic stem cells (mESCs),hESCs normally undergo high rates of spontaneous apoptosis and differentiation,making them difficult to maintain in culture. Here we demonstrate that p53 protein accumulates in apoptotic hESCs induced by agents that damage DNA. However,despite the accumulation of p53,it nevertheless fails to activate the transcription of its target genes. This inability of p53 to activate its target genes has not been observed in other cell types,including mESCs. We further demonstrate that p53 induces apoptosis of hESCs through a mitochondrial pathway. Reducing p53 expression in hESCs in turn reduces both DNA damage-induced apoptosis as well as spontaneous apoptosis. Reducing p53 expression also reduces spontaneous differentiation and slows the differentiation rate of hESCs. Our studies reveal the important roles of p53 as a critical mediator of human embryonic stem cells survival and differentiation.
View Publication
产品类型:
产品号#:
72062
72064
72802
产品名:
环状 Pifithrin-α(Cyclic Pifithrin-Alpha)
环状 Pifithrin-α (Hydrobromide)
Pifithrin-mu
文献
Valenti MT et al. (DEC 2008)
Bone 43 6 1084--92
Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells.
MSCs are known to have an extensive proliferative potential and ability to differentiate in various cell types. Osteoblastic differentiation from mesenchymal progenitor cells is an important step of bone formation,though the pattern of gene expression during differentiation is not yet well understood. Here,to investigate the possibility to obtain a model for in vitro bone differentiation using mesenchymal stem cells (hMSCs) from human subjects non-invasively,we developed a method to obtain hMSCs-like cells from peripheral blood by a two step method that included an enrichment of mononuclear cells followed by depletion of unwanted cells. Using these cells,we analyzed the expression of transcription factor genes (runt-related transcription factor 2 (RUNX2) and osterix (SP7)) and bone related genes (osteopontin (SPP1),osteonectin (SPARC) and collagen,type I,alpha 1 (COLIA1)) during osteoblastic differentiation. Our results demonstrated that hMSCs can be obtained from peripheral blood and that they are able to generate CFU-F and to differentiate in osteoblast and adipocyte; in this study,we also identified a possible gene expression timing during osteoblastic differentiation that provided a powerful tool to study bone physiology.
View Publication
产品类型:
产品号#:
15128
15168
产品名:
RosetteSep™人间充质干细胞富集抗体混合物
RosetteSep™人间充质干细胞富集抗体混合物
文献
Meng G et al. (APR 2011)
Stem cells and development 20 4 583--91
Rapid isolation of undifferentiated human pluripotent stem cells from extremely differentiated colonies
Conventionally,researchers remove spontaneously differentiated areas in human pluripotent stem cell (hPSC) colonies by using a finely drawn glass pipette or a commercially available syringe needle. However,when extreme differentiation occurs,it is inefficient to purify the remaining undifferentiated cells,as these undifferentiated areas are too small to be isolated completely with the mechanical method. Antibodies can be utilized to purify the rare undifferentiated cells; however,this type of purification cannot be used in xeno-free culture systems. To avoid the loss of valuable hPSCs,we developed a novel method to isolate undifferentiated hPSCs from extremely differentiated colonies that could be easily adapted to xeno-free culture conditions. This protocol involves dissecting away differentiated areas,dissociating the remaining colony into clumps,seeding small clumps into new dishes,and picking undifferentiated colonies for expansion. Using this method,we routinely achieve completely undifferentiated colonies in one passage without the use of antibody-based purification.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Thirant C et al. (JAN 2011)
PloS one 6 1 e16375
Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors.
BACKGROUND: Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs),thought to account for tumorigenesis and therapeutic resistance,have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples,regardless of their histopathologies and grades of malignancy (57% of embryonal tumors,57% of low-grade gliomas and neuro-glial tumors,70% of ependymomas,91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (textgreater7 self-renewals),whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities,the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05,chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013,log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers,the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. CONCLUSIONS/SIGNIFICANCE: In brain tumors affecting adult patients,TSCs have been isolated only from high-grade gliomas. In contrast,our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Narsinh KH et al. (MAR 2011)
Journal of Clinical Investigation 121 3 1217--1221
Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are promising can- didate cell sources for regenerative medicine. However,despite the common ability of hiPSCs and hESCs to dif- ferentiate into all 3 germ layers,their functional equivalence at the single cell level remains to be demonstrated. Moreover,single cell heterogeneity amongst stem cell populations may underlie important cell fate decisions. Here,we used single cell analysis to resolve the gene expression profiles of 362 hiPSCs and hESCs for an array of 42 genes that characterize the pluripotent and differentiated states. Comparison between single hESCs and single hiPSCs revealed markedly more heterogeneity in gene expression levels in the hiPSCs,suggesting that hiPSCs occupy an alternate,less stable pluripotent state. hiPSCs also displayed slower growth kinetics and impaired directed differentiation as compared with hESCs. Our results suggest that caution should be exer- cised before assuming that hiPSCs occupy a pluripotent state equivalent to that of hESCs,particularly when producing differentiated cells for regenerative medicine aims.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lumelsky N et al. (MAY 2001)
Science (New York,N.Y.) 292 5520 1389--94
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Although the source of embryonic stem (ES) cells presents ethical concerns,their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas,insulin is produced and secreted by specialized structures,islets of Langerhans. Diabetes,which affects 16 million people in the United States,results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice,the insulin-producing cells undergo rapid vascularization and maintain a clustered,islet-like organization.
View Publication
Rivera T et al. (JAN 2017)
Nature structural & molecular biology 24 1 30--39
A balance between elongation and trimming regulates telomere stability in stem cells.
Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs); however,the mechanisms governing telomere length homeostasis in these cell types are unclear. Here,we report that telomere length is determined by the balance between telomere elongation,which is mediated by telomerase,and telomere trimming,which is controlled by XRCC3 and Nbs1,homologous recombination proteins that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles),respectively. We found that reprogramming of differentiated cells induces T-circle and single-stranded C-rich telomeric DNA accumulation,indicating the activation of telomere trimming pathways that compensate telomerase-dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs,suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus,tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.
View Publication