Ishikawa S and Ito S ( 2016)
Toxicology in Vitro 38 170--178
Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue
In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response,and observed a significant increase in secretion of IL-8,GRO-α,IL-1β,and GM-CSF. Interestingly,secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Ryan MA et al. (OCT 2010)
Nature medicine 16 10 1141--6
Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However,G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors,precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently,new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice,we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF,implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment,genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42),and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
Morrow M et al. (MAY 2004)
Blood 103 10 3890--6
TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity.
The t(12;21)(p13;q22) translocation is the most common chromosomal abnormality yet identified in any pediatric leukemia and gives rise to the TEL-AML1 fusion product. To investigate the effects of TEL-AML1 on hematopoiesis,fetal liver hematopoietic progenitor cells (HPCs) were transduced with retroviral vectors expressing this fusion protein. We show that TEL-AML1 dramatically alters differentiation of HPCs in vitro,preferentially promoting B-lymphocyte development,enhancing self-renewal of B-cell precursors,and leading to the establishment of long-term growth factor-dependent pre-B-cell lines. However,it had no effect on myeloid development in vitro. Further experiments were performed to determine whether TEL-AML1 also demonstrates lineage-specific activity in vivo. TEL-AML1-expressing HPCs displayed a competitive advantage in reconstituting both B-cell and myeloid lineages in vivo but had no effect on reconstitution of the T-cell lineage. Despite promoting these alterations in hematopoiesis,TEL-AML1 did not induce leukemia in transplanted mice. Our study provides a unique insight into the role of TEL-AML1 in leukemia predisposition and a potential model to study the mechanism of leukemogenesis associated with this fusion.
View Publication
产品类型:
产品号#:
03534
03231
产品名:
MethoCult™GF M3534
MethoCult™M3231
T. Yogo et al. (Jul 2025)
Nature Communications 16
Innovative identification technologies for hematopoietic stem cells (HSCs) have expanded the scope of stem cell biology. Clinically,the functional quality of HSCs critically influences the safety and therapeutic efficacy of stem cell therapies. However,most analytical techniques capture only a single snapshot,disregarding the temporal context. A comprehensive understanding of the temporal heterogeneity of HSCs necessitates live-cell,real-time and non-invasive analysis. Here,we developed a prediction system for HSC diversity by integrating single-HSC ex vivo expansion technology with quantitative phase imaging (QPI)-driven machine learning. By analyzing the cellular kinetics of individual HSCs,we discovered previously undetectable diversity that snapshot analysis cannot resolve. The QPI-driven algorithm quantitatively evaluates stemness at the single-cell level and leverages temporal information to significantly improve prediction accuracy. This platform advances the field from snapshot-based identification of HSCs to dynamic,time-resolved prediction of their functional quality based on past cellular kinetics. Subject terms: Haematopoietic stem cells,Stem-cell differentiation,Self-renewal,Imaging
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Choi S et al. ( 2006)
The Journal of biological chemistry 281 18 12722--12728
Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells.
G(q/11) protein-coupled muscarinic receptors are known to regulate the release of soluble amyloid precursor protein (sAPPalpha) produced by alpha-secretase processing; however,their signaling mechanisms remain to be elucidated. It has been reported that a muscarinic agonist activates nuclear factor (NF)-kappaB,a transcription factor that has been shown to play an important role in the Alzheimer disease brain,and that NF-kappaB activation is regulated by intracellular Ca2+ level. In the present study,we investigated whether NF-kappaB activation plays a role in muscarinic receptor-mediated sAPPalpha release enhancement and contributes to a changed capacitative Ca2+ entry (CCE),which was suggested to be involved in the muscarinic receptor-mediated stimulation of sAPPalpha release. Muscarinic receptor-mediated NF-kappaB activation was confirmed by observing the translocation of the active subunit (p65) of NF-kappaB to the nucleus by the muscarinic agonist,oxotremorine M (oxoM),in SH-SY5Y neuroblastoma cells expressing muscarinic receptors that are predominantly of the M3 subtype. NF-kappaB activation and sAPPalpha release enhancement induced by oxoM were inhibited by NF-kappaB inhibitors,such as an NF-kappaB peptide inhibitor (SN50),an IkappaB alpha kinase inhibitor (BAY11-7085),a proteasome inhibitor (MG132),the inhibitor of proteasome activity and IkappaB phosphorylation,pyrrolidine dithiocarbamate,the novel NF-kappaB activation inhibitor (6-amino-4-(4-phenoxyphenylethylamino) quinazoline),and by an intracellular Ca2+ chelator (TMB-8). Furthermore,both oxoM-induced NF-kappaB activation and sAPPalpha release were antagonized by CCE inhibitors (gadolinium or SKF96365) but not by voltage-gated Ca2+-channel blockers. On the other hand,treatment of cells with NF-kappaB inhibitors (SN50,BAY11-7085,MG132,or pyrrolidine dithiocarbamate) did not inhibit muscarinic receptor-mediated CCE. These findings provide evidence for the involvement of NF-kappaB regulated by CCE in muscarinic receptor-mediated sAPPalpha release enhancement.
View Publication
产品类型:
产品号#:
73352
产品名:
QNZ
Al-Ali H et al. (MAY 2013)
ACS chemical biology 8 5 1027--36
Applications for ROCK kinase inhibition.
ROCK kinases,which play central roles in the organization of the actin cytoskeleton,are tantalizing targets for the treatment of human diseases. Deletion of ROCK I in mice revealed a role in the pathophysiological responses to high blood pressure,and validated ROCK inhibition for the treatment of specific types of cardiovascular disease. To date,the only ROCK inhibitor employed clinically in humans is fasudil,which has been used safely in Japan since 1995 for the treatment of cerebral vasospasm. Clinical trials,mostly focusing on the cardiovascular system,have uncovered beneficial effects of fasudil for additional indications. Intriguing recent findings also suggest significant potential for ROCK inhibitors in the production and implantation of stem cells for disease therapies.
View Publication
Lam AT-L et al. (JUL 2014)
Stem cells and development 23 14 1688--1703
Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures
The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined,reliable,and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC),as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein,vitronectin (VN),or laminin (LN) have been shown to support hPSC expansion in a static environment. However,they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology,consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein,cell attachment efficiency and cell spreading are improved,thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates,which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 $\$ during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 $\$ indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation,whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines,thus confirming the robustness of this scalable expansion process in a defined environment.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hoggatt J et al. (MAY 2009)
Blood 113 22 5444--55
Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation.
Adult hematopoietic stem cells (HSCs) are routinely used to reconstitute hematopoiesis after myeloablation; however,transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number,or poor homing,engraftment,or self-renewal. Here we report that mouse and human HSCs express prostaglandin E2 (PGE2) receptors,and that short-term ex vivo exposure of HSCs to PGE2 enhances their homing,survival,and proliferation,resulting in increased long-term repopulating cell (LTRC) and competitive repopulating unit (CRU) frequency. HSCs pulsed with PGE2 are more competitive,as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon serial transplantation,with full multilineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression,enhances their migration to SDF-1 in vitro and homing to bone marrow in vivo,and stimulates HSC entry into and progression through cell cycle. In addition,PGE2 enhances HSC survival,associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. Our results define novel mechanisms of action whereby PGE2 enhances HSC function and supports a strategy to use PGE2 to facilitate hematopoietic transplantation.
View Publication
X. Liu et al. ( 2017)
International journal of biological sciences 13 2 232--244
Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis.
Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues,but whether they could promote angiogenesis in ONFH has not been reported,and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining,micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation,migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss,and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation,migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover,the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on endothelial cells. The data provide the first evidence for the potential of iPS-MSC-Exos in treating ONFH.
View Publication