Induced pluripotent stem cells with a mitochondrial dna deletion
In congenital mitochondrial DNA (mtDNA) disorders,a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues,which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown,and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders,as cytoplasmic genetic material is retained during direct reprogramming. Here,we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage,we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth,mitochondrial function,and hematopoietic phenotype when differentiated in vitro,compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. STEM CELLS2013;31:1287–1297
View Publication
产品类型:
产品号#:
04434
04444
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Park Y et al. (MAR 2014)
Journal of Biotechnology 174 1 39--48
Hepatic differentiation of human embryonic stem cells on microcarriers
Translation of stem cell research to industrial and clinical settings mostly requires large quantities of cells,especially those involving large organs such as the liver. A scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiated cells. To increase the culture efficiency in bioreactor system,high surface to volume ratio needs to be achieved. We employed a microcarrier culture system for the expansion of undifferentiated human embryonic stem cells (hESCs) as well as for directed differentiation of these cells to hepatocyte-like cells. Cells in single cell suspension were attached to the bead surface in even distribution and were expanded to 1??106cells/ml within 2 days of hESC culture with maintenance of the level of pluripotency markers. Directed differentiation into hepatocyte-like cells on microcarriers,both in static culture and stirred bioreactors,induced similar levels of hepatocyte-like cell differentiation as observed with cells cultured in conventional tissue culture plates. The cells expressed both immature and mature hepatocyte-lineage genes and proteins such as asialoglycoprotein receptor-1 (ASGPR-1) and albumin. Differentiated cells exhibited functional characteristics such as secretion of albumin and urea,and CYP3A4 activity could be detected. Microcarriers thus offer the potential for large-scale expansion and differentiation of hESCs induced hepatocyte-like cells in a more controllable bioreactor environment. ?? 2014.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Genga RM et al. (MAY 2016)
Methods 101 36--42
Controlling transcription in human pluripotent stem cells using CRISPR-effectors
The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells,including hPSCs. In this review,we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation,gene repression,and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene,demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wculek SK and Malanchi I (DEC 2015)
Nature advance on 7582 413--417
Neutrophils support lung colonization of metastasis-initiating breast cancer cells
Despite progress in the development of drugs that efficiently target cancer cells,treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However,the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site,we demonstrate that neutrophils specifically support metastatic initiation. Importantly,we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Castañ et al. (FEB 2016)
PLoS ONE 11 2 e0149502
SETD7 regulates the differentiation of human embryonic stem cells
The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Peacock CD and Watkins DN (JUN 2008)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26 17 2883--9
Cancer stem cells and the ontogeny of lung cancer.
Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth,survival,and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramount in developing new clinical approaches with the goal of preventing disease recurrence. This review summarizes our understanding of the cellular and molecular mechanisms operating within the putative cancer-initiating cell at the core of lung neoplasia.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Buehr M et al. (DEC 2008)
Cell 135 7 1287--98
Capture of authentic embryonic stem cells from rat blastocysts.
Embryonic stem (ES) cells have been available from inbred mice since 1981 but have not been validated for other rodents. Failure to establish ES cells from a range of mammals challenges the identity of cultivated stem cells and our understanding of the pluripotent state. Here we investigated derivation of ES cells from the rat. We applied molecularly defined conditions designed to shield the ground state of authentic pluripotency from inductive differentiation stimuli. Undifferentiated cell lines developed that exhibited diagnostic features of ES cells including colonization of multiple tissues in viable chimeras. Definitive ES cell status was established by transmission of the cell line genome to offspring. Derivation of germline-competent ES cells from the rat paves the way to targeted genetic manipulation in this valuable biomedical model species. Rat ES cells will also provide a refined test-bed for functional evaluation of pluripotent stem cell-derived tissue repair and regeneration.
View Publication
产品类型:
产品号#:
72182
72184
100-0248
产品名:
PD0325901
PD0325901
PD0325901
Sliwa A et al. (SEP 2009)
Genes & nutrition 4 3 195--8
Differentiation of human adipose tissue SVF cells into cardiomyocytes.
Progenitor cells have been extensively studied and therapeutically applied in tissue reconstructive therapy. Stromal vascular fraction (SVF) cells,which are derived from adipose tissue,may represent a potential source of the cells which undergo phenotypical differentiation into many lineages both in vitro as well as in vivo. The goal of this study was to check whether human SVF cells may differentiate into cardiomyocyte-like entities. Human SVF cells were induced to differentiate by their incubation in Methocult medium in the presence of SCF,IL-3 and IL-6. Morphological transformation of the cells was monitored using optical light microscope,whereas changes in expression of the genes typical for cardiac phenotype were measured by qRT-PCR. Incubation of the human SVF cells in the medium that promotes cardiomyocyte differentiation in vitro resulted in formation of myotubule-like structures accompanied by up-regulation of the myocardium-characteristic genes,such as GATA,MEF2C,MYOD1,but not ANP. Human SVF cells differentiate into cardiomyocyte-like cells in the presence of the certain set of myogenesis promoting cytokines.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Zhu S et al. (JUN 2017)
Nature 546 7660 667--670
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.
Rotavirus,a leading cause of severe gastroenteritis and diarrhoea in young children,accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling,raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo,especially by NOD-like receptor (NLR) inflammasomes,is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that,via RNA helicase Dhx9,Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
R. J. Ihry et al. ( 2018)
Nature Medicine
P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
Economic development has become a prominent issue for state governments. Nevertheless,states vary in the economic policies they choose. Two general approaches to the issue are discussed: the maintenance/attraction strategy and the creation strategy. Factor analysis allows us to gauge state effort on these two criteria. Regression analysis shows that political culture is an important factor in predicting which approach a state chooses,with traditionalistic states favoring the maintenance/attraction strategy,and moralistic states favoring the creation alternative. Other predictors of state policy choices include the condition of the economy and the diffusion of innovations. Also discussed is the interaction of political culture with other relevant variables in shaping state policies.
View Publication
Single cell suppression profiling of human regulatory T cells
Regulatory T cells (Treg) play an important role in regulating immune homeostasis in health and disease. Traditionally their suppressive function has been assayed by mixing purified cell populations,which does not provide an accurate picture of a physiologically relevant response. To overcome this limitation,we here develop ‘single cell suppression profiling of human Tregs’ (scSPOT). scSPOT uses a 52-marker CyTOF panel,a cell division detection algorithm,and a whole PBMC system to assess the effect of Tregs on all other cell types simultaneously. In this head-to-head comparison,we find Tregs having the clearest suppressive effects on effector memory CD8 T cells through partial division arrest,cell cycle inhibition,and effector molecule downregulation. Additionally,scSPOT identifies a Treg phenotypic split previously observed in viral infection and propose modes of action by the FDA-approved drugs Ipilimumab and Tazemetostat. scSPOT is thus scalable,robust,widely applicable,and may be used to better understand Treg immunobiology and screen for therapeutic compounds. Traditional regulatory T cell (Tregs) assays utilize mixture of purified cell population. Here the authors develop a ‘single cell suppression profiling of human Tregs’ (scSPOT) with 52-marker CyTOF panel,a cell division detection algorithm,and a whole PBMC system to assess Treg suppressive function on all cell types simultaneously.
View Publication