Y. Otsuka et al. (NOV 2018)
Journal of immunology (Baltimore,Md. : 1950) 201 10 3006--3016
Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells.
Human mucosal tissues and skin contain two distinct types of dendritic cell (DC) subsets,epidermal Langerhans cells (LCs) and dermal DCs,which can be distinguished by the expression of C-type lectin receptors,Langerin and DC-SIGN,respectively. Although peripheral blood monocytes differentiate into these distinct subsets,monocyte-derived LCs (moLCs) induced by coculture with GM-CSF,IL-4,and TGF-$\beta$1 coexpress both Langerin and DC-SIGN,suggesting that the environmental cues remain unclear. In this study,we show that LC differentiation is TGF-$\beta$1 dependent and that cofactors such as IL-4 and TNF-$\alpha$ promote TGF-$\beta$1-dependent LC differentiation into Langerin+DC-SIGN- moLCs but continuous exposure to IL-4 blocks differentiation. Steroids such as dexamethasone greatly enhanced TNF-$\alpha$-induced moLC differentiation and blocked DC-SIGN expression. Consistent with primary LCs,dexamethasone-treated moLCs express CD1a,whereas monocyte-derived DCs (moDCs) express CD1b,CD1c,and CD1d. moDCs but not moLCs produced inflammatory cytokines after stimulation with CD1b and CD1d ligands mycolic acid and $\alpha$-galactosylceramide,respectively. Strikingly,CD1a triggering with squalene on moLCs but not moDCs induced strong IL-22-producing CD4+ helper T cell responses. As IL-22 is an important cytokine in the maintenance of skin homeostasis,these data suggest that CD1a on LCs is involved in maintaining the immune barrier in the skin.
View Publication
产品类型:
产品号#:
19059
19059RF
产品名:
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
文献
R. J. Komban et al. ( 2019)
Nature communications 10 1 2423
Activated Peyer's patch B cells sample antigen directly from M cells in the subepithelial dome.
The germinal center (GC) reaction in Peyer's patches (PP) requires continuous access to antigens,but how this is achieved is not known. Here we show that activated antigen-specific CCR6+CCR1+GL7- B cells make close contact with M cells in the subepithelial dome (SED). Using in situ photoactivation analysis of antigen-specific SED B cells,we find migration of cells towards the GC. Following antigen injection into ligated intestinal loops containing PPs,40{\%} of antigen-specific SED B cells bind antigen within 2 h,whereas unspecifc cells do not,indicating B cell-receptor involvment. Antigen-loading is not observed in M cell-deficient mice,but is unperturbed in mice depleted of classical dendritic cells (DC). Thus,we report a M cell-B cell antigen-specific transporting pathway in PP that is independent of DC. We propose that this antigen transporting pathway has a critical role in gut IgA responses,and should be taken into account when developing mucosal vaccines.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
文献
G. Goverse et al. ( 2017)
Journal of immunology 198 5 2172--2181
Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells.
The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article,we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro,respectively. Furthermore,our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells,along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover,we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion,our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Hsiao C et al. (MAY 2016)
Biotechnology Journal 11 5 662--675
Human pluripotent stem cell culture density modulates YAP signaling
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however,the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway,which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs,we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities,YAP phosphorylation and localization to the cytoplasm increased,which led to decreased YAP-mediated transcriptional activity. Furthermore,total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally,the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Arscott WT et al. (SEP 2011)
Brain research 1413 1--8
Interferon β-1b directly modulates human neural stem/progenitor cell fate.
Interferon beta (IFN-β) is a mainline treatment for multiple sclerosis (MS); however its exact mechanism of action is not completely understood. IFN-β is known as an immunomodulator; although recent evidence suggests that IFN-β may also act directly on neural stem/progenitor cells (NPCs) in the central nervous system (CNS). NPCs can differentiate into all neural lineage cells,which could contribute to the remyelination and repair of MS lesions. Understanding how IFN-β influences NPC physiology is critical to develop more specific therapies that can better assist this repair process. In this study,we investigated the effects of IFN β-1b (Betaseron®) on human NPCs in vitro (hNPCs). Our data demonstrate a dose-dependent response of hNPCs to IFN β-1b treatment via sustained proliferation and differentiation. Furthermore,we offer insight into the signaling pathways involved in these mechanisms. Overall,this study shows a direct effect of IFN β-1b on hNPCs and highlights the need to further understand how current MS treatments can modulate endogenous NPC populations within the CNS.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Stockmann M et al. (AUG 2013)
Stem Cell Reviews and Reports 9 4 475--492
Developmental and Functional Nature of Human iPSC Derived Motoneurons
Mehta A et al. (FEB 2013)
Toxicological Sciences 131 2 458--469
Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes
Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study,we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide),class III (sotalol and amiodarone),and class IV (verapamil),whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability,class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs,verapamil shortened cFPD and FPmin by 25 and 50%,respectively. Furthermore,verapamil reduced beating frequencies drastically. Importantly,the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes,drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine,flecainide,and sotalol was demonstrated at supraphysiological concentrations. Furthermore,off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
H. Xi et al. (FEB 2017)
Cell reports 18 6 1573--1585
In Vivo Human Somitogenesis Guides Somite Development from hPSCs.
Somites form during embryonic development and give rise to unique cell and tissue types,such as skeletal muscles and bones and cartilage of the vertebrae. Using somitogenesis-stage human embryos,we performed transcriptomic profiling of human presomitic mesoderm as well as nascent and developed somites. In addition to conserved pathways such as WNT-$\beta$-catenin,we also identified BMP and transforming growth factor $\beta$ (TGF-$\beta$) signaling as major regulators unique to human somitogenesis. This information enabled us to develop an efficient protocol to derive somite cells in vitro from human pluripotent stem cells (hPSCs). Importantly,the in-vitro-differentiating cells progressively expressed markers of the distinct developmental stages that are known to occur during in vivo somitogenesis. Furthermore,when subjected to lineage-specific differentiation conditions,the hPSC-derived somite cells were multipotent in generating somite derivatives,including skeletal myocytes,osteocytes,and chondrocytes. This work improves our understanding of human somitogenesis and may enhance our ability to treat diseases affecting somite derivatives.
View Publication
D. Loeffler et al. (mar 2022)
Blood 139 13 2011--2023
Asymmetric organelle inheritance predicts human blood stem cell fate.
Understanding human hematopoietic stem cell fate control is important for its improved therapeutic manipulation. Asymmetric cell division,the asymmetric inheritance of factors during division instructing future daughter cell fates,was recently described in mouse blood stem cells. In human blood stem cells,the possible existence of asymmetric cell division remained unclear because of technical challenges in its direct observation. Here,we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated,nonrandom process. Furthermore,multiple additional organelles,including autophagosomes,mitophagosomes,autolysosomes,and recycling endosomes,show preferential asymmetric cosegregation with lysosomes. Importantly,asymmetric lysosomal inheritance predicts future asymmetric daughter cell-cycle length,differentiation,and stem cell marker expression,whereas asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence,human hematopoietic stem cell fates are regulated by asymmetric cell division,with both mechanistic evolutionary conservation and differences to the mouse system.
View Publication
产品类型:
产品号#:
17856
02698
产品名:
EasySep™人CD34正选试剂盒 II
人类低密度脂蛋白
文献
Glatigny S et al. (MAY 2016)
Journal of Immunology 196 9 3542--6
Cutting Edge: Integrin α4 Is Required for Regulatory B Cell Control of Experimental Autoimmune Encephalomyelitis.
The neutralization of integrin α4 (Itga4) is currently used as treatment in multiple sclerosis. Although most studies have focused on its function on lymphocyte migration to the CNS,we have uncovered the importance of Itga4 for the generation of regulatory B cells in peripheral immune organs and their control of pathogenic T cell response and CNS pathology. Our study underscores the importance of looking at the dual role of B cells in CNS autoimmunity and provides important perspectives regarding the efficacy and side effects associated with Itga4 neutralization and other B cell-targeting therapies.
View Publication