Oeda S et al. (JAN 2013)
The International journal of developmental biology 57 5 383--9
Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.
Renal lineages including kidney are derived from intermediate mesoderm,which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined,serum-free,adherent,monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm,odd-skipped related 1 (Osr1) and Wilms Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist,but not by retinoid X receptor (RXR) agonists. Furthermore,the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.
View Publication
产品类型:
产品号#:
72892
产品名:
TTNPB
Moussaieff A et al. (MAR 2015)
Cell Metabolism 21 3 392--402
Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly,modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate,a precursor of acetyl-CoA,delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells,while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ramakrishnan VM et al. (AUG 2015)
Scientific reports 5 13231
Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells.
Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source,but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis,FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture,pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells,which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis,FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC),pretreated with excess free sterols,Lovastatin,or ethanol (control),and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response,with virtually no DiI-LDL internalization with excess sterols and an ˜2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes.
View Publication
Y. Numata et al. (May 2025)
Cell Death & Disease 16 1
Digoxin promotes anoikis of circulating cancer cells by targeting Na + /K + -ATPase α3-isoform
Circulating cancer cells (CCCs) are closely related to the process of distant metastasis. In early step of the metastasis cascade,CCCs must evade the detachment-induced cell death (anoikis) for their survival. Here,we examined whether Na + /K + -ATPase α3-isoform (α3NaK) in CCCs contributes to avoidance of anoikis. In CCCs isolated from gastric cancer patients,α3NaK was predominantly localized in the plasma membrane (PM),but it moved to the cytoplasm when the CCCs were attached to culture dishes. The CCCs showed significant expression of integrin α5 but not fibronectin,one of components of the extracellular matrix (ECM). In human gastric cancer MKN45 cells,digoxin (20 and 50 nM),a cardiac glycoside,significantly inhibited the enzyme activity and translocation (from cytoplasm to PM) of α3NaK,while they had no significant effect on ubiquitous Na + /K + -ATPase α1-isoform (α1NaK) in the PM. The translocation of α3NaK required the loss of ECM components from the cells. Additionally,digoxin significantly enhanced caspase 3/7 activity,as well as the expression of cleaved caspase 3,while reducing the viability of detached (floating) cells. In the MKN45 xenograft mouse model,intraperitoneal administration of digoxin (2 mg/kg/day) significantly decreased the number of CCCs and suppressed their liver metastasis. Our results suggest that α3NaK plays an essential role in the survival of CCCs in gastric cancer,and that digoxin enhances anoikis in detached (metastatic) gastric cancer cells by inhibiting the α3NaK translocation from cytoplasm to PM,thereby reducing CCCs. Targeting α3NaK may be a promising therapeutic strategy against CCC survival. Subject terms: Metastasis,Gastric cancer,Apoptosis
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
Abadier M et al. (DEC 2017)
Cell reports 21 13 3885--3899
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation.
The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings,discovered in neutrophils,facilitate cell rolling at high shear stress. Here,we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1),Th17,and regulatory T (Treg) cells but less in Th2 cells. In vivo,endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1,Th17,and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
(Jan 2025)
Nature Communications 16
Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function,DYSF exon 44,founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing,rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation,hEx44mut,recapitulates the patients’ phenotype and an identical re-framing outcome in primary muscle stem cells. Finally,gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility,not only in treating dysferlin deficiency syndromes,but also perhaps other forms of muscular dystrophy. Dysferlin-deficient muscular dystrophy is a devastating and untreatable disease. Using Cas9,the authors restored dysferlin in muscle stem cells from patients ex vivo and show proof-of-concept for autologous cell replacement therapies in a new humanized mouse model.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(May 2024)
Nature Microbiology 9 6
Peptostreptococcus anaerobius mediates anti-PD1 therapy resistance and exacerbates colorectal cancer via myeloid-derived suppressor cells in mice
Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically,P. anaerobius administration activated integrin α2β1–NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22,a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally,therapeutic targeting of either integrin α2β1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC. Interactions between Peptostreptococcus anaerobius and host cells promote recruitment and activation of myeloid-derived suppressor cells,leading to anti-PD1 immune checkpoint inhibitor resistance and exacerbated colorectal cancer in mice.
View Publication
产品类型:
产品号#:
19867
产品名:
EasySep™小鼠MDSC(CD11b+Gr1+)分选试剂盒
(Feb 2024)
Cancer Immunology Research 12 4
High-Specificity CRISPR-Mediated Genome Engineering in Anti-BCMA Allogeneic CAR T Cells Suppresses Allograft Rejection in Preclinical Models
Allogeneic CAR T–cell therapies are being developed for hematologic malignancies. The authors implement a Cas12a chRDNA platform to generate allogeneic immune-cloaked BCMA-specific CAR T cells with resistance to host response–mediated rejection for evaluation in multiple myeloma. AbstractAllogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here,we describe preclinical data supporting the ongoing first-in-human clinical study,the CaMMouflage trial (NCT05722418),evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic,allogeneic anti–B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor–derived T cells using a Cas12a CRISPR hybrid RNA–DNA (chRDNA) genome-editing technology platform. To address allograft rejection,CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition,T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition,CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell–mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M–HLA-E. Potent antitumor efficacy,when combined with an immune-cloaking armoring strategy to dampen allograft rejection,offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst,p. 385
View Publication
Itin PH et al. (NOV 1994)
Endocrinology 135 5 1793--8
Effects of vitamin D metabolites on proliferation and differentiation of cultured human epidermal keratinocytes grown in serum-free or defined culture medium.
We examined the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3],25-hydroxyvitamin D3 (25OHD3),and vitamin D3 on human keratinocyte proliferation and differentiation in a serum-free or defined culture system. Concentrations greater than 10(-8) M 1,25-(OH)2D3 or 10(-7) M 25(OH)2D3 caused marked inhibition of cell growth. Growth inhibition with high doses of 1,25-(OH)2D3 was not stringent,but was mainly exerted in the G1 phase of the cell cycle. Early release from the cell cycle block restored the proliferation of human keratinocytes. The calcium concentration in the medium had no significant effect on the antiproliferative action of 1,25-(OH)2D3,25OHD3,and vitamin D3. We also show that human keratinocyte proliferation is enhanced at doses of 1,25-(OH)2D3 and 25OH2D3 of 10(-9) M or less. Enhanced proliferation of human keratinocytes with physiological concentrations of 1,25-(OH)2D3 could only be shown in fully defined medium that contained no vitamin D3,related sterols,or bovine pituitary extract. Human keratinocyte differentiation was enhanced with higher doses of 1,25-(OH)2D3 when cells were grown in the presence of high calcium concentrations. These studies demonstrate that the lower,physiological concentrations of vitamin D3 metabolites are capable of stimulating the proliferation of epidermal keratinocytes grown under selected conditions that eliminate confounding or unidentified medium culture factors. Vitamin D3 metabolites are shown to exert mitogenic trophic effects in cultured human epithelial cells similar to their established activities in vivo.
View Publication
产品类型:
产品号#:
72412
产品名:
骨化三醇(Calcitriol)
Souness JE et al. ( 1996)
British journal of pharmacology 118 3 649--658
Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer.
1. We have investigated the inhibitory effects of RP 73401 (piclamilast) and rolipram against human monocyte cyclic AMP-specific phosphodiesterase (PDE4) in relation to their effects on prostaglandin (PG)E2-induced cyclic AMP accumulation and lipopolysaccharide (LPS)-induced TNF alpha production and TNF alpha mRNA expression. 2. PDE4 was found to be the predominant PDE isoenzyme in the cytosolic fraction of human monocytes. Cyclic GMP-inhibited PDE (PDE3) was also detected in the cytosolic and particulate fractions. Reverse transcription polymerase chain reaction (RT-PCR) of human monocyte poly (A+) mRNA revealed amplified products corresponding to PDE4 subtypes A and B of which the former was most highly expressed. A faint band corresponding in size to PDE4D was also observed. 3. RP 73401 was a potent inhibitor of cytosolic PDE4 (IC50: 1.5 +/- 0.6 nM,n = 3). (+/-)-Rolipram (IC50: 313 +/- 6.7 nM,n = 3) was at least 200 fold less potent than RP 73401. R-(-)-rolipram was approximately 3 fold more potent than S-(+)-rolipram against cytosolic PDE4. 4. RP 73401 (IC50: 9.2 +/- 2.1 nM,n = 6) was over 50 fold more potent than (+/-)-rolipram (IC50: 503 +/- 134 nM,n = 6) ) in potentiating PGE2-induced cyclic AMP accumulation. R-(-)-rolipram (IC50: 289 +/- 121 nM,n = 5) was 4.7 fold more potent than its S-(+)-enantiomer (IC50: 1356 +/- 314 nM,n = 5). A strong and highly-significant,linear correlation (r = 0.95,P textless 0.01,n = 13) was observed between the inhibitory potencies of a range of structurally distinct PDE4 inhibitors against monocyte PDE4 and their ED50 values in enhancing monocyte cyclic AMP accumulation. A poorer,though still significant,linear correlation (r = 0.67,P textless 0.01,n = 13) was observed between the potencies of the same compounds in potentiating PGE2-induced monocyte cyclic AMP accumulation and their abilities to displace [3H]-rolipram binding to brain membranes. 5. RP 73401 (IC50: 6.9 +/- 3.3 nM,n = 5) was 71 fold more potent than (+/-)-rolipram (IC50: 490 +/- 260 nM,n = 4) in inhibiting LPS-induced TNF alpha release from monocytes. R-(-)-rolipram (IC50: 397 +/- 178 nM,n = 3) was 5.2-fold more potent than its S-(+)- enantiomer (IC50: 2067 +/- 659 nM,n = 3). As with cyclic AMP,accumulation a closer,linear correlation existed between the potency of structurally distinct compounds in suppressing TNF alpha with PDE4 inhibition (r = 0.93,P textless 0.01,n = 13) than with displacement of [3H]-rolipram binding (r = 0.65,P textless 0.01,n = 13). 6. RP 73401 (IC50: 2 nM) was 180 fold more potent than rolipram (IC50: 360 nM) in suppressing LPS (10 ng ml-1)-induced TNF alpha mRNA. 7. The results demonstrate that RP 73401 is a very potent inhibitor of TNF alpha release from human monocytes suggesting that it may have therapeutic potential in the many pathological conditions associated with over-production of this pro-inflammatory cytokine. Furthermore,PDE inhibitor actions on functional responses are better correlated with inhibition of PDE4 catalytic activity than displacement of [3H]-rolipram from its high-affinity binding site,suggesting that the native PDE4 in human monocytes exists predominantly in a 'low-affinity' state.
View Publication