Identification of spectral modifications occurring during reprogramming of somatic cells.
Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However,research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (ESC). We report here on the use of infrared microspectroscopy to follow the spectral modification of somatic cells during the reprogramming process. We show that induced pluripotent stem cells (iPSC) adopt a chemical composition leading to a spectral signature indistinguishable from that of embryonic stem cells (ESC) and entirely different from that of the original somatic cells. Similarly,this technique allows a distinction to be made between partially and fully reprogrammed cells. We conclude that infrared microspectroscopy signature is a novel methodology to evaluate induced pluripotency and can be added to the tests currently used for this purpose.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hsu M-J and Hung S-L (JUN 2013)
Archives of virology 158 6 1287--96
Antiherpetic potential of 6-bromoindirubin-3'-acetoxime (BIO-acetoxime) in human oral epithelial cells.
Glycogen synthase kinase 3 (GSK-3) functions in the regulation of glycogen metabolism,in the cell cycle,and in immune responses and is targeted by some viruses to favor the viral life cycle. Inhibition of GSK-3 by 6-bromoindirubin-3'-acetoxime (BIO-acetoxime),a synthetic derivative of a compound from the Mediterranean mollusk Hexaplex trunculus,protects cells from varicella infection. In this study,we examined the effects of BIO-acetoxime against herpes simplex virus-1 (HSV-1) infection in human oral epithelial cells,which represent a natural target cell type. The results revealed that BIO-acetoxime relieves HSV-1-induced cytopathic effects and apoptosis. We also found that BIO-acetoxime reduced viral yields and the expression of different classes of viral proteins. Furthermore,addition of BIO-acetoxime before,simultaneously with or after HSV-1 infection significantly reduced viral yields. Collectively,BIO-acetoxime may suppress viral gene expression and protect oral epithelial cells from HSV-1 infection. These results suggest the possible involvement of GSK-3 in HSV-1 infection.
View Publication
产品类型:
产品号#:
73322
产品名:
BIO-Acetoxime
Tahamtani Y et al. (FEB 2014)
Cell journal 16 1 63--72
Stauprimide Priming of Human Embryonic Stem Cells toward Definitive Endoderm.
OBJECTIVE: In vitro production of a definitive endoderm (DE) is an important issue in stem cell-related differentiation studies and it can assist with the production of more efficient endoderm derivatives for therapeutic applications. Despite tremendous progress in DE differentiation of human embryonic stem cells (hESCs),researchers have yet to discover universal,efficient and cost-effective protocols. MATERIALS AND METHODS: In this experimental study,we have treated hESCs with 200 nM of Stauprimide (Spd) for one day followed by activin A (50 ng/ml; A50) for the next three days (Spd-A50). In the positive control group,hESCs were treated with Wnt3a (25 ng/ml) and activin A (100 ng/ml) for the first day followed by activin A for the next three days (100 ng/ml; W/A100-A100). RESULTS: Gene expression analysis showed up regulation of DE-specific marker genes (SOX17,FOXA2 and CXCR4) comparable to that observed in the positive control group. Expression of the other lineage specific markers did not significantly change (ptextless0.05). We also obtained the same gene expression results using another hESC line. The use of higher concentrations of Spd (400 and 800 nM) in the Spd-A50 protocol caused an increase in the expression SOX17 as well as a dramatic increase in mortality rate of the hESCs. A lower concentration of activin A (25 ng/ml) was not able to up regulate the DE-specific marker genes. Then,A50 was replaced by inducers of definitive endoderm; IDE1/2 (IDE1 and IDE2),two previously reported small molecule (SM) inducers of DE,in our protocol (Spd-IDE1/2). This replacement resulted in the up regulation of visceral endoderm (VE) marker (SOX7) but not DE-specific markers. Therefore,while the Spd-A50 protocol led to DE production,we have shown that IDE1/2 could not fully replace activin A in DE induction of hESCs. CONCLUSION: These findings can assist with the design of more efficient chemically-defined protocols for DE induction of hESCs and lead to a better understanding of the different signaling networks that are involved in DE differentiation of hESCs.
View Publication
产品类型:
产品号#:
72652
产品名:
Stauprimide
Howden SE and Thomson JA ( 2014)
1114 37--55
Gene targeting of human pluripotent stem cells by homologous recombination.
The ability of human embryonic stem cells and induced pluripotent stem cells to differentiate into all adult cell types greatly facilitates the study of human development,disease pathogenesis,and the generation of screening systems to identify novel therapeutic agents. Autologous cell therapies based on patient-derived induced pluripotent stem cells also hold great promise for the treatment and correction of many inherited and acquired diseases. The full potential of human pluripotent stem cells can be unleashed by genetically modifying a chosen locus with minimal impact on the remaining genome,which can be achieved by targeting genes by homologous recombination. This chapter will describe a protocol for gene modification of pluripotent stem cells by homologous recombination and several methods for the screening and identification of successfully modified clones.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chaurasia P et al. (JUN 2014)
The Journal of clinical investigation 124 6 2378--95
Epigenetic reprogramming induces the expansion of cord blood stem cells.
Cord blood (CB) cells that express CD34 have extensive hematopoietic capacity and rapidly divide ex vivo in the presence of cytokine combinations; however,many of these CB CD34+ cells lose their marrow-repopulating potential. To overcome this decline in function,we treated dividing CB CD34+ cells ex vivo with several histone deacetylase inhibitors (HDACIs). Treatment of CB CD34+ cells with the most active HDACI,valproic acid (VPA),following an initial 16-hour cytokine priming,increased the number of multipotent cells (CD34+CD90+) generated; however,the degree of expansion was substantially greater in the presence of both VPA and cytokines for a full 7 days. Treated CD34+ cells were characterized based on the upregulation of pluripotency genes,increased aldehyde dehydrogenase activity,and enhanced expression of CD90,c-Kit (CD117),integrin α6 (CD49f),and CXCR4 (CD184). Furthermore,siRNA-mediated inhibition of pluripotency gene expression reduced the generation of CD34+CD90+ cells by 89%. Compared with CB CD34+ cells,VPA-treated CD34+ cells produced a greater number of SCID-repopulating cells and established multilineage hematopoiesis in primary and secondary immune-deficient recipient mice. These data indicate that dividing CB CD34+ cells can be epigenetically reprogrammed by treatment with VPA so as to generate greater numbers of functional CB stem cells for use as transplantation grafts.
View Publication
产品类型:
产品号#:
72292
产品名:
Valproic Acid (Sodium Salt)
Rouzbeh S et al. (AUG 2015)
Stem Cells 33 8 2431--2441
Molecular signature of erythroblast enucleation in human embryonic stem cells.
While enucleation is a critical step in the terminal differentiationbackslashnof human red blood cells,the molecular mechanisms underlying thisbackslashnunique process remain unclear. To investigate erythroblast enucleationbackslashnwe studied the erythroid differentiation of human embryonic stembackslashncells (hESCs),which provide a unique model for deeper understandingbackslashnof the development and differentiation of multiple cell types. Firstly,backslashnusing a two-step protocol,we demonstrated that terminal erythroidbackslashndifferentiation from hESCs is directly dependent on the age of thebackslashnembryoid bodies. Secondly,by choosing hESCs in two extreme conditionsbackslashnof erythroid culture,we obtained an original differentiation modelbackslashnwhich allows one to study the mechanisms underlying the enucleationbackslashnof erythroid cells by analyzing the gene and miRNA (miR) expressionbackslashnprofiles of cells from these two culture conditions. Thirdly,usingbackslashnan integrated analysis of mRNA and miR expression profiles,we identifiedbackslashn5 miRs potentially involved in erythroblast enucleation. Finally,backslashnby selective knockdown of these 5 miRs we found miR-30a to be a regulatorbackslashnof erythroblast enucleation in hESCs. This article is protected bybackslashncopyright. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Laperle A et al. (AUG 2015)
Stem cell reports 5 2 195--206
$\$-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal.
Substrate composition significantly impacts human pluripotent stem cell (hPSC) self-renewal and differentiation,but relatively little is known about the role of endogenously produced extracellular matrix (ECM) components in regulating hPSC fates. Here we identify $\$-5 laminin as a signature ECM component endogenously synthesized by undifferentiated hPSCs cultured on defined substrates. Inducible shRNA knockdown and Cas9-mediated disruption of the LAMA5 gene dramatically reduced hPSC self-renewal and increased apoptosis without affecting the expression of pluripotency markers. Increased self-renewal and survival was restored to wild-type levels by culturing the LAMA5-deficient cells on exogenous laminin-521. Furthermore,treatment of LAMA5-deficient cells with blebbistatin or a ROCK inhibitor partially restored self-renewal and diminished apoptosis. These results demonstrate that endogenous $\$-5 laminin promotes hPSC self-renewal in an autocrine and paracrine manner. This finding has implications for understanding how stem cells dynamically regulate their microenvironment to promote self-renewal and provides guidance for efforts to design substrates for stem cell bioprocessing.
View Publication
X. Guan et al. (jun 2022)
Nature 606 7915 791--796
Androgen receptor activity in T cells limits checkpoint blockade efficacy.
Immune checkpoint blockade has revolutionized the field of oncology,inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer,immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth,and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFN$\gamma$ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together,our findings establish that T cell intrinsic AR activity represses IFN$\gamma$ expression and represents a novel mechanism of immunotherapy resistance.
View Publication
产品类型:
产品号#:
17684
17684RF
产品名:
EasySep™ PE正选试剂盒 II
RoboSep™ PE正选试剂盒 II
(Nov 2024)
Bio-protocol 14 22
Multiplex Genome Editing of Human Pluripotent Stem Cells Using Cpf1
Targeted genome editing of human pluripotent stem cells (hPSCs) is critical for basic and translational research and can be achieved with site-specific endonucleases. Cpf1 (CRISPR from Prevotella and Francisella) is a programmable DNA endonuclease with AT-rich PAM sequences. In this protocol,we describe procedures for using a single vector system to deliver Cpf1 and CRISPR RNA (crRNA) for genome editing in hPSCs. This protocol enables indel formation and homologous recombination-mediated precise editing at multiple loci. With the delivery of Cpf1 and a single U6 promoter-driven guide RNA array composed of an AAVS1-targeting and a MAFB-targeting crRNA array,efficient multiplex genome editing at the AAVS1 (knockin) and MAFB (knockout) loci in hPSCs could be achieved in a single experiment. The edited hPSCs expressed pluripotency markers and could differentiate into neurons in vitro. This system also generated INS reporter hPSCs with a 6 kb cassette knockin at the INS locus. The INS reporter cells can differentiate into β-cells that express tdTomato and luciferase,permitting fluorescence-activated cell sorting of hPSC-β-cells. By targeted screening of potential off-target sequences that are most homologous to crRNA sequences,no off-target mutations were detected in any of the tested sequences. This work provides an efficient and flexible system for precise genome editing in mammalian cells including hPSCs with the benefits of less off-target effects. Key features • A single-vector system to deliver Cpf1 and crRNA enables the sorting of transfected cells • Efficient and simultaneous multi-modular genome editing exemplified by mutation of MAFB and knockin of AAVS1 loci in a single experiment • Edited PSCs showed minimal off-target effects and can be differentiated into multiple cell types.
View Publication