Baker D et al. (NOV 2016)
Stem cell reports 7 5 998--1012
Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells.
Genetic changes in human pluripotent stem cells (hPSCs) gained during culture can confound experimental results and potentially jeopardize the outcome of clinical therapies. Particularly common changes in hPSCs are trisomies of chromosomes 1,12,17,and 20. Thus,hPSCs should be regularly screened for such aberrations. Although a number of methods are used to assess hPSC genotypes,there has been no systematic evaluation of the sensitivity of the commonly used techniques in detecting low-level mosaicism in hPSC cultures. We have performed mixing experiments to mimic the naturally occurring mosaicism and have assessed the sensitivity of chromosome banding,qPCR,fluorescence in situ hybridization,and digital droplet PCR in detecting variants. Our analysis highlights the limits of mosaicism detection by the commonly employed methods,a pivotal requirement for interpreting the genetic status of hPSCs and for setting standards for safe applications of hPSCs in regenerative medicine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lavasani M et al. (APR 2014)
The Journal of clinical investigation 124 4 1745--56
Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration.
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here,we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone,while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration,which led to functional recovery as measured by sustained gait improvement. Furthermore,no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy,gastrocnemius muscles from mice exhibited substantially less muscle atrophy,an increase in muscle mass after denervation,and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
C. R. Seehus et al. (DEC 2017)
Nature communications 8 1 1900
Alternative activation generates IL-10 producing type 2 innate lymphoid cells.
Type 2 innate lymphoid cells (ILC2) share cytokine and transcription factor expression with CD4+ Th2 cells,but functional diversity of the ILC2 lineage has yet to be fully explored. Here,we show induction of a molecularly distinct subset of activated lung ILC2,termed ILC210. These cells produce IL-10 and downregulate some pro-inflammatory genes. Signals that generate ILC210 are distinct from those that induce IL-13 production,and gene expression data indicate that an alternative activation pathway leads to the generation of ILC210. In vivo,IL-2 enhances ILC210 generation and is associated with decreased eosinophil recruitment to the lung. Unlike most activated ILC2,the ILC210 population contracts after cessation of stimulation in vivo,with maintenance of a subset that can be recalled by restimulation,analogous to T-cell effector cell and memory cell generation. These data demonstrate the generation of a previously unappreciated IL-10 producing ILC2 effector cell population.
View Publication
产品类型:
产品号#:
19860
19860RF
85415
85420
85450
85460
86415
86420
86450
86460
产品名:
EasySep™ 小鼠Streptavidin RapidSpheres™分选试剂盒
RoboSep™ 小鼠Streptavidin RapidSpheres™分选试剂盒
SepMate™-15 (IVD), 100 units
SepMate™-15 (IVD)
SepMate™-50 (IVD)
SepMate™-50 (IVD)
SepMate™-15 (RUO), 100 units
SepMate™-15 (RUO)
SepMate™-50 (RUO)
SepMate™-50 (RUO)
Xia G and Ashizawa T (JUN 2015)
Histochemistry and cell biology 143 6 557--64
Dynamic changes of nuclear RNA foci in proliferating DM1 cells.
Nuclear RNA foci are molecular hallmarks of myotonic dystrophy type 1 (DM1). However,no designated study has investigated their formation and changes in proliferating cells. Proliferating cells,as stem cells,consist of an important cellular pool in the human body. The revelation of foci changes in these cells might shed light on the effects of the mutation on these specific cells and tissues. In this study,we used human DM1 iPS-cell-derived neural stem cells (NSCs) as cellular models to investigate the formation and dynamic changes of RNA foci in proliferating cells. Human DM1 NSCs derived from human DM1 iPS cells were cultured under proliferation conditions and nonproliferation conditions following mitomycin C treatment. The dynamic changes of foci during the cell cycle were investigated by fluorescence in situ hybridization. We found RNA foci formed and dissociated during the cell cycle. Nuclear RNA foci were most prominent in number and size just prior to entering mitosis (early prophase). During mitosis,most foci disappeared. After entering interphase,RNA foci accumulated again in the nuclei. After stopping cell dividing by treatment of mitomycin C,the number of nuclear RNA foci increased significantly. In summary,DM1 NSC nuclear RNA foci undergo dynamic changes during cell cycle,and mitosis is a mechanism to decrease foci load in the nuclei,which may explain why dividing cells are less affected by the mutation. The dynamic changes need to be considered when using foci as a marker to monitor the effects of therapeutic drugs.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
C.-W. Li et al. (FEB 2018)
Cancer cell 33 2 187--201.e10
Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1.
Protein glycosylation provides proteomic diversity in regulating protein localization,stability,and activity; it remains largely unknown whether the sugar moiety contributes to immunosuppression. In the study of immune receptor glycosylation,we showed that EGF induces programmed death ligand 1 (PD-L1) and receptor programmed cell death protein 1 (PD-1) interaction,requiring beta$-1,3-N-acetylglucosaminyl transferase (B3GNT3) expression in triple-negative breast cancer. Downregulation of B3GNT3 enhances cytotoxic T cell-mediated anti-tumor immunity. A monoclonal antibody targeting glycosylated PD-L1 (gPD-L1) blocks PD-L1/PD-1 interaction and promotes PD-L1 internalization and degradation. In addition to immune reactivation,drug-conjugated gPD-L1 antibody induces a potent cell-killing effect as well as a bystander-killing effect on adjacent cancer cells lacking PD-L1 expression without any detectable toxicity. Our work suggests targeting protein glycosylation as a potential strategy to enhance immune checkpoint therapy.
View Publication
产品类型:
产品号#:
10971
10991
70025
70025.1
70025.2
70025.3
产品名:
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
Walker A et al. (JAN 2010)
Nature communications 1 6 71
Non-muscle myosin II regulates survival threshold of pluripotent stem cells.
Human pluripotent stem (hPS) cells such as human embryonic stem (hES) and induced pluripotent stem (hiPS) cells are vulnerable under single cell conditions,which hampers practical applications; yet,the mechanisms underlying this cell death remain elusive. In this paper,we demonstrate that treatment with a specific inhibitor of non-muscle myosin II (NMII),blebbistatin,enhances the survival of hPS cells under clonal density and suspension conditions,and,in combination with a synthetic matrix,supports a fully defined environment for self-renewal. Consistent with this,genetically engineered mouse embryonic stem cells lacking an isoform of NMII heavy chain (NMHCII),or hES cells expressing a short hairpin RNA to knock down NMHCII,show greater viability than controls. Moreover,NMII inhibition increases the expression of self-renewal regulators Oct3/4 and Nanog,suggesting a mechanistic connection between NMII and self-renewal. These results underscore the importance of the molecular motor,NMII,as a novel target for chemically engineering the survival and self-renewal of hPS cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72402
72404
85850
85857
85870
85875
产品名:
(-)-Blebbistatin
(-)-Blebbistatin
mTeSR™1
mTeSR™1
Todaro M et al. (NOV 2010)
Cancer research 70 21 8874--85
Tumorigenic and metastatic activity of human thyroid cancer stem cells.
Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. We show that the tumorigenic capacity in thyroid cancer is confined in a small subpopulation of stem-like cells with high aldehyde dehydrogenase (ALDH(high)) activity and unlimited replication potential. ALDH(high) cells can be expanded indefinitely in vitro as tumor spheres,which retain the tumorigenic potential upon delivery in immunocompromised mice. Orthotopic injection of minute numbers of thyroid cancer stem cells recapitulates the behavior of the parental tumor,including the aggressive metastatic features of undifferentiated thyroid carcinomas,which are sustained by constitutive activation of cMet and Akt in thyroid cancer stem cells. The identification of tumorigenic and metastagenic thyroid cancer cells may provide unprecedented preclinical tools for development and preclinical validation of novel targeted therapies.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Ruiz S et al. (JAN 2010)
PLoS ONE 5 12 e15526
High-efficient generation of induced pluripotent stem cells from human astrocytes.
The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells,including fibroblasts,keratinocytes and peripheral blood cells,with variable reprogramming efficiencies and kinetics. Here,we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells,with similar efficiencies to keratinocytes,which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zweigerdt R et al. (MAY 2011)
Nature protocols 6 5 689--700
Scalable expansion of human pluripotent stem cells in suspension culture.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones,three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation,but it does not require culture preadaptation,use of microcarriers or any other matrices. Over a time course of 4-7 d,hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly,hPSCs maintain pluripotency and karyotype stability for more than ten passages.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Orecchia A et al. (JAN 2011)
PloS one 6 9 e24307
Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.
Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently,inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis,colitis,airway inflammation and asthma. So far,little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins,the class III HDAC. In this study,we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC),a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol,a specific sirtuin inhibitor,in HDMEC response to pro-inflammatory cytokines. We found that,even though sirtinol treatment alone affected only long-term cell proliferation,it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact,sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells,as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably,sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2,we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally,we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether,these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.
View Publication
产品类型:
产品号#:
73822
73824
产品名:
西尔替诺(Sirtinol)
Schinzel RT et al. (JAN 2011)
PloS one 6 12 e27495
Efficient culturing and genetic manipulation of human pluripotent stem cells.
Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However,the lack of simple,robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells,2) significantly increases viability and replating efficiency,3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation,we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%,with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions,and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ahfeldt T et al. (FEB 2012)
Nature cell biology 14 1476-4679 (Electronic) 209--219
Programming human pluripotent stem cells into white and brown adipocytes.
The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%. These adipocytes retained their identity independent of transgene expression,could be maintained in culture for several weeks,expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice,the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease
View Publication