Gene transfer into pluripotent stem cells via lentiviral transduction
Recombinant lentiviral vectors are powerful tools to stably manipulate human pluripotent stem cells. They can be used to deliver ectopic genes,shRNAs,miRNAs,or any possible genetic DNA sequence into diving and nondividing cells. Here we describe a general protocol for the production of self-inactivating lentiviral vector particles and their purification to high titers by either ultracentrifugation or ultrafiltration. Next we provide a basic procedure to transduce human pluripotent stem cells and propagate clonal cell lines.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Keller KC et al. (MAR 2016)
Stem Cells and Development 25 13 scd.2015.0367
Wnt5a Supports Osteogenic Lineage Decisions in Embryonic Stem Cells
The specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However,the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis,the non-canonical WNT5a is expressed early on. Cells either sorted by their positive WNT5a expression or when supplemented with recombinant WNT5a (rWNT5a) during a two-day window showed significantly enhanced osteogenic yield. Mechanistically,rWNT5a supplementation up-regulated PKC,CamKII and JNK activity while antagonizing the key effector of canonical Wnt signaling: beta-catenin. Conversely,when recombinant WNT3a (rWNT3a) or other positive regulators of ?-catenin were employed during this same time-window there was a decrease in osteogenic marker expression. However,if rWNT3a was supplemented during a time-window following rWNT5a treatment,osteogenic differentiation was enhanced both in murine and human ESCs. Elucidating the role of these WNT ligands in directing the early stages of osteogenesis has the potential to considerably improve tissue engineering protocols and applications for regenerative medicine.
View Publication
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust,patient-specific tissue model systems for studying the pathogenesis of vascular disease,and for developing novel therapeutic interventions. Here,we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore,we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system,extendable to study other vascular proliferative diseases for drug screening. Thus,this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
D. P. Dever et al. (NOV 2016)
Nature 539 7629 384--389
CRISPR/Cas9 $\beta$-globin gene targeting in human haematopoietic stem cells.
The $\beta$-haemoglobinopathies,such as sickle cell disease and $\beta$-thalassaemia,are caused by mutations in the $\beta$-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure $\beta$-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably,we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90{\%} targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that,after differentiation into erythrocytes,express adult $\beta$-globin (HbA) messenger RNA,which confirms intact transcriptional regulation of edited HBB alleles. Collectively,these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for $\beta$-haemoglobinopathies.
View Publication
产品类型:
产品号#:
09605
09655
04034
04044
产品名:
StemSpan™ SFEM II
StemSpan™ SFEM II
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
Steen R and Egeland T (JUN 1998)
Leukemia & lymphoma 30 1-2 23--30
CD34 molecule epitope distribution on cells of haematopoietic origin.
The CD34 molecule belongs to the mucin membrane molecule family and is expressed on virtually all normal haematopoietic progenitor cells (HPC). Due to its heavy glycosylation,several different epitopes exist on the molecule. Based on the sensitivity of the glycosylated molecule to degradation with a glycoprotease from Pasteurella haemolytica and neuraminidase,three classes of epitopes have been identified. The class I and II epitopes are probably related to the glycosylated part of the molecule while class III epitopes are core protein related. It has been known for some time that CD34 class I epitopes are absent on CD34 molecules expressed on high endothelial venules. Here we review recent observations that expression of both class I and II epitopes,but not class III epitopes,is impaired on mature myeloid CD34-pos. HPC while no diverse class epitope expression was observed on immature HPC. In addition,cells from patients with CD34-pos. acute myeloid leukaemia of FAB classification M4-M5,i.e.,leukaemic blast cells of relatively mature morphologic phenotype,also express less class I and II epitopes than class III epitopes. It therefore seems that HPC maturation and class I and II epitope deprivation are concomitant events and that CD34 class I and II epitopes are lost prior to downregulation of the CD34 molecule per se. The biological significance of this observation is discussed as well as the need to carefully select CD34-specific monoclonal antibodies for research and clinical purposes.
View Publication
Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand,FasL. Although Fas is highly expressed in cancer cells,insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here,we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor,fasudil,that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL),fasudil promoted cancer cell apoptosis,but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
F. W. Pagliuca et al. (oct 2014)
Cell 159 2 428--39
Generation of functional human pancreatic $\beta$ cells in vitro.
The generation of insulin-producing pancreatic $\beta$ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However,insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide $\beta$ cells. Here,we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive $\beta$ cells from hPSC in vitro. These stem-cell-derived $\beta$ cells (SC-$\beta$) express markers found in mature $\beta$ cells,flux Ca(2+) in response to glucose,package insulin into secretory granules,and secrete quantities of insulin comparable to adult $\beta$ cells in response to multiple sequential glucose challenges in vitro. Furthermore,these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner,and transplantation of these cells ameliorates hyperglycemia in diabetic mice.
View Publication
产品类型:
产品号#:
100-0548
100-0549
产品名:
3,3',5-三碘- l -甲状腺原氨酸(钠盐水合物)
3,3',5-三碘- l -甲状腺原氨酸(钠盐水合物)
Saï et al. (FEB 2016)
PLoS pathogens 12 2 e1005407
HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.
Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover,Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands,such as HIV and CpG respectively,turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions,and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection,but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here,we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α,TNF-α,IFN-γ and IL-12,and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations,the addition of NK cells did not promote the release of these mediators,suggesting that once efficiently triggered by the virus,pDCs could not integrate new activating signals delivered by NK cells. However,high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly,we identified the alarmin HMGB1,released at pDC-NK cell synapse,as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover,HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1,HMGB1-specific antibodies,sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether,these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells,and they suggest a novel mechanism of innate control of HIV-1 infection.
View Publication
产品类型:
产品号#:
19062
19062RF
19055
19055RF
17977
17977RF
产品名:
EasySep™人浆细胞样DC富集试剂盒
RoboSep™ 人浆细胞样DC富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
EasySep™人浆细胞样DC分选试剂盒
RoboSep™ 人浆细胞样DC分选试剂盒
(Nov 2024)
Scientific Reports 14
Comparison of iPSC-derived human intestinal epithelial cells with Caco-2 cells and human in vivo data after exposure to Lactiplantibacillus plantarum WCFS1
To investigate intestinal health and its potential disruptors in vitro,representative models are required. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) more closely resemble the in vivo intestinal tissue than conventional in vitro models like human colonic adenocarcinoma Caco-2 cells. However,the potential of IECs to study immune-related responses upon external stimuli has not been investigated in detail yet. The aim of the current study was to evaluate immune-related effects of IECs by challenging them with a pro-inflammatory cytokine cocktail. Subsequently,the effects of Lactiplantibacillus plantarum WCFS1 were investigated in unchallenged and challenged IECs. All exposures were compared to Caco-2 cells and in vivo data where possible. Upon the inflammatory challenge,IECs and Caco-2 cells induced a pro-inflammatory response which was strongest in IECs. Heat-killed L. plantarum exerted the strongest effect on immune parameters in the IEC model,while L. plantarum in the stationary growth phase had most pronounced effects on immune-related gene expression in Caco-2 cells. Unfortunately,comparison to in vivo transcriptomics data showed limited similarities,which could be explained by essential differences in the study setups. Altogether,hiPSC-derived IECs show a high potential as a model to study immune-related responses in the intestinal epithelium in vitro.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-024-74802-w.
View Publication