Saraiya M et al. (APR 2010)
Tissue engineering. Part A 16 4 1443--55
Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells.
The aim of this study was to determine if treatment with reversine,a purine analog,promoted generation of skeletal progenitor cells from lineage-committed annulus fibrosus cells. Reversine modulated cell growth,morphology,and the actin cytoskeleton of annulus fibrosus cells. Microarray profiling coupled with Ingenuity Pathway Analysis revealed that reversine treatment resulted in a significant expression change in many genes including those required for cell-cell interaction,cell movement,cell growth,and development. Further analysis revealed that there was involvement of gene networks concerned with cellular assembly and organization,DNA replication and repair,tissue morphology,and cell-to-cell signaling. The gene expression profile was dependent on reversine concentration. In osteogenic media,cells pretreated with 300 nM reversine exhibited an increased induction in alkaline phosphatase activity and enhanced expression of alkaline phosphatase,bone sialoprotein,osteocalcin,and collagen type I mRNA. Maintained in adipogenic media,the reversine-pretreated annulus cells displayed evidence of adipogenic differentiation: accumulation of cytosolic lipid droplets and increased expression of PPAR-gamma2,LPL,and Fabp mRNA. In chondrogenic media,cells pretreated with reversine exhibited marked increase in the induction of aggrecan,collagen types II,IX,and XI,and versican. It is concluded that reversine treatment induced annulus fibrosus cell plasticity and promoted their differentiation along mesenchymal lineages. This agent could be used to generate skeletal progenitor cells to orchestrate the repair of the intervertebral disc.
View Publication
产品类型:
产品号#:
72612
72614
产品名:
逆转素(Reversine)
逆转素(Reversine)
文献
Diekmann U and Naujok O ( 2016)
1341 157--172
Generation and purification of definitive endoderm cells generated from pluripotent stem cells
Differentiation of pluripotent stem cells into cells of the definitive endoderm requires an in vitro gastrulation event. Differentiated somatic cells derived from this germ layer may then be used for cell replacement therapies of degenerative diseases of the liver,lung,and pancreas. Here we describe an endoderm differentiation protocol,which initiates the differentiation from a defined cell number of dispersed single cells and reliably yields in textgreater70-80 % endoderm-committed cells in a short 5-day treatment regimen.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Huff CA and Matsui W (JUN 2008)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26 17 2895--900
Multiple myeloma cancer stem cells.
Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow,elevated serum immunoglobulin,and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy,corticosteroids,radiation therapy,and a growing number of agents with novel mechanisms of action. However,few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myeloma cells is essential to ultimately improving long-term outcomes,but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease.
View Publication
Agerstam H et al. (SEP 2010)
Blood 116 12 2103--11
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
The 8p11 myeloproliferative syndrome (EMS),also referred to as stem cell leukemia/lymphoma,is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly,EMS is characterized by fusion of various partner genes to the FGFR1 gene,resulting in constitutive activation of the tyrosine kinases in FGFR1. To date,no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context,that of normal primary human hematopoietic cells. Herein,we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilical-cord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice,expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS,including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover,bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes,by themselves,are capable of initiating an EMS-like disorder,and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Gallego MJ et al. (JAN 2010)
Stem cell research & therapy 1 4 28
The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes.
INTRODUCTION: The physiological signals that direct the division and differentiation of the zygote to form a blastocyst,and subsequent embryonic stem cell division and differentiation during early embryogenesis,are unknown. Although a number of growth factors,including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst,it is not known whether these growth factors directly signal human embryonic stem cells (hESCs).backslashnbackslashnMETHODS: Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB's; akin to blastulation) and neuroectodermal rosettes (akin to neurulation).backslashnbackslashnRESULTS: We found that hCG promotes the division of hESCs and their differentiation into EB's and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation,an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A,and treatment of hESC colonies with P4 induces neurulation,as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB's and rosettes.backslashnbackslashnCONCLUSIONS: Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Belkind-Gerson J et al. (JAN 2013)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 25 1 61--9.e7
Nestin-expressing cells in the gut give rise to enteric neurons and glial cells.
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis,their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs,determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain,colonic muscularis (Musc),and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal,glial,and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP),neurosphere-derived neurons and glia both expressed Nestin in vitro,suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover,following transplantation into aneural colon,brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres,differentiate into neuronal,glial,and mesenchymal lineages in vitro,generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
05715
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
NeuroCult™ 分化添加物(小鼠和大鼠)
NeuroCult™ 分化试剂盒(小鼠和大鼠)
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
文献
Vittet D et al. (NOV 1996)
Blood 88 9 3424--31
Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.
The mechanisms involved in the regulation of vasculogenesis still remain unclear in mammals. Totipotent embryonic stem (ES) cells may represent a suitable in vitro model to study molecular events involved in vascular development. In this study,we followed the expression kinetics of a relatively large set of endothelial-specific markers in ES-derived embryoid bodies (EBs). Results of both reverse transcription-polymerase chain reaction and/or immunofluorescence analysis show that a spontaneous endothelial differentiation occurs during EBs development. ES-derived endothelial cells express a full range of cell lineage-specific markers: platelet endothelial cell adhesion molecule (PECAM),Flk-1,tie-1,tie-2,vascular endothelial (VE) cadherin,MECA-32,and MEC-14.7. Analysis of the kinetics of endothelial marker expression allows the distinction of successive maturation steps. Flk-1 was the first to be detected; its mRNA is apparent from day 3 of differentiation. PECAM and tie-2 mRNAs were found to be expressed only from day 4,whereas VE-cadherin and tie-1 mRNAs cannot be detected before day 5. Immunofluorescence stainings of EBs with antibodies directed against Flk-1,PECAM,VE-cadherin,MECA-32,and MEC-14.7 confirmed that the expression of these antigens occurs at different steps of endothelial cell differentiation. The addition of an angiogenic growth factor mixture including erythropoietin,interleukin-6,fibroblast growth factor 2,and vascular endothelial growth factor in the EB culture medium significantly increased the development of primitive vascular-like structures within EBs. These results indicate that this in vitro system contains a large part of the endothelial cell differentiation program and constitutes a suitable model to study the molecular mechanisms involved in vasculogenesis.
View Publication
产品类型:
产品号#:
产品名:
文献
Pol SU et al. (SEP 2013)
Experimental Neurology 247 694--702
Sox10-MCS5 enhancer dynamically tracks human oligodendrocyte progenitor fate
In this study,we sought to establish a novel method to prospectively and dynamically identify live human oligodendrocyte precursor cells (OPCs) and oligodendrocyte lineage cells from brain dissociates and pluripotent stem cell culture. We selected a highly conserved enhancer element of the Sox10 gene,known as MCS5,which directs reporter expression to oligodendrocyte lineage cells in mouse and zebrafish. We demonstrate that lentiviral Sox10-MCS5 induced expression of GFP at high levels in a subpopulation of human CD140a/PDGF??R-sorted OPCs as well as their immature oligodendrocyte progeny. Furthermore,we show that almost all Sox10-MCS5:GFPhigh cells expressed OPC antigen CD140a and human OPCs expressing SOX10,OLIG2,and PDGFRA mRNAs could be prospectively identified using GFP based fluorescence activated cells sorting alone. Additionally,we established a human induced pluripotent cell (iPSC) line transduced with the Sox10-MCS5:GFP reporter using a Rex-Neo cassette. Similar to human primary cells,GFP expression was restricted to embryoid bodies containing both oligodendrocyte progenitor and oligodendrocyte cells and co-localized with NG2 and O4-positive cells respectively. As such,we have developed a novel reporter system that can track oligodendrocyte commitment in human cells,establishing a valuable tool to improve our understanding and efficiency of human oligodendrocyte derivation. ?? 2013 Elsevier Inc.
View Publication