Pearce DJ and Bonnet D (SEP 2007)
Experimental hematology 35 9 1437--46
The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells.
OBJECTIVE: In murine hematopoietic tissue,direct repopulation experiments have demonstrated that the side population (SP) represents a remarkable enrichment of hematopoietic stem cells. Human SP has been phenotyped as negative for lineage antigens as well as CD34. However,in the 9 years since the original publication,no long-term hematopoietic reconstitution has been reported for the adult human SP/CD34(-) subset. Elevated levels of aldehyde dehydrogenase (ALDH) have been demonstrated in murine and human progenitor cells when compared to other hematopoietic cells. METHODS: Here,we report the phenotype of human cord blood SP cells. We established the technique of simultaneous phenotyping,Hoechst exclusion,and ALDH labeling on murine tissues. We then performed the simultaneous analysis of phenotype,SP,and ALDH activity on human cord blood and bone marrow cells. Finally,we analyzed the phenotype and functional potential of human cord blood ALDH(+) cells to determine whether Lin(-)/CD34(-) cells are identified via this technique. RESULTS: We demonstrate that human Lin(-)/CD34(-)/ALDH(+) cells are capable of long-term repopulation. Although the SP technique identifies cells that overlap with the ALDH(+) cell population,this is restricted to the CD34(+) cell subset. CONCLUSION: Hoechst exclusion ability does not seem to be the method of choice for the isolation of human hematopoietic stem cells.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Chen G et al. ( 2014)
PloS one 9 6 e98565
Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium.
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However,the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear. METHODS hUC-MSCs were separated by adherent tissue culture. hUC-MSCs were cultured in serum-free MesenCult-XF medium and FBS-bases DMEM complete medium. At the 1st,3rd,5th,8th,10th,and 15th passage,the differentiation of MSCs into osteogenic,chondrogenic,and adipogenic cells was detected,and MTT,surface antigens were measured. Tumorigenicity was analyzed at the 15th passage. Conventional karyotyping was performed at passage 0,8,and 15. The telomerase activity of hUC-MSCs at passage 1-15 was analyzed. RESULTS Flow cytometry analysis showed that very high expression was detected for CD105,CD73,and CD90 and very low expression for CD45,CD34,CD14,CD79a,and HLA-DR. MSCs could differentiate into osteocytes,chondrocytes,and adipocytes in vitro. There was no obvious chromosome elimination,displacement,or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further,no tumors formed in rats injected with hUC-MSCs (P15) cultured in serum-free and in serum-containing conditions. CONCLUSION Our data showed that hUC-MSCs met the International Society for Cellular Therapy standards for conditions of long-term in vitro culturing at P15. Since hUC-MSCs can be safely expanded in vitro and are not susceptible to malignant transformation in serum-free medium,these cells are suitable for cell therapy.
View Publication
产品类型:
产品号#:
产品名:
文献
tze Wu D et al. (APR 2012)
PLoS ONE 7 4 e34778
Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular,in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers,a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts,allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells,but that specific genes,including positive and negative selection markers,regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.
View Publication
产品类型:
产品号#:
73342
73344
85850
85857
产品名:
嘌呤霉素 (Dihydrochloride)
嘌呤霉素 (Dihydrochloride)
mTeSR™1
mTeSR™1
文献
Geng Y and Feng B (JUL 2016)
Heliyon 2 7 e00133
A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells
The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen,we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure,while cell surface marker analyses revealed a VE-cadherin+CD31+CD34+KDR+CD43???putative endothelial progenitor population. Furthermore,molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL+multi-cellular modules and a VEGFR3+sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Massumi M et al. ( 2016)
PloS one 11 10 e0164457
An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here,through the sequential in vitro targeting of selected signaling pathways,we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex,as an extracellular matrix,could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP,SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL,and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells,1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally,ES-DBCs were responsive to high glucose in static incubation and perifusion studies,and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion,targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs,small molecules or genes that may have potential to influence beta-cell function.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wang Y et al. (DEC 2012)
Circulation research 111 12 1494--1503
Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging
RATIONALE: Molecular imaging has proven to be a vital tool in the characterization of stem cell behavior in vivo. However,the integration of reporter genes has typically relied on random integration,a method that is associated with unwanted insertional mutagenesis and positional effects on transgene expression.backslashnbackslashnOBJECTIVE: To address this barrier,we used genome editing with zinc finger nuclease (ZFN) technology to integrate reporter genes into a safe harbor gene locus (PPP1R12C,also known as AAVS1) in the genome of human embryonic stem cells and human induced pluripotent stem cells for molecular imaging.backslashnbackslashnMETHODS AND RESULTS: We used ZFN technology to integrate a construct containing monomeric red fluorescent protein,firefly luciferase,and herpes simplex virus thymidine kinase reporter genes driven by a constitutive ubiquitin promoter into a safe harbor locus for fluorescence imaging,bioluminescence imaging,and positron emission tomography imaging,respectively. High efficiency of ZFN-mediated targeted integration was achieved in both human embryonic stem cells and induced pluripotent stem cells. ZFN-edited cells maintained both pluripotency and long-term reporter gene expression. Functionally,we successfully tracked the survival of ZFN-edited human embryonic stem cells and their differentiated cardiomyocytes and endothelial cells in murine models,demonstrating the use of ZFN-edited cells for preclinical studies in regenerative medicine.backslashnbackslashnCONCLUSION: Our study demonstrates a novel application of ZFN technology to the targeted genetic engineering of human pluripotent stem cells and their progeny for molecular imaging in vitro and in vivo.
View Publication
Eirew P et al. (DEC 2008)
Nature medicine 14 12 1384--9
A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability.
Previous studies have demonstrated that normal mouse mammary tissue contains a rare subset of mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended with fibroblasts in collagen gels,which are then implanted under the kidney capsule of hormone-treated immunodeficient mice. After 2-8 weeks,the gels contain bilayered mammary epithelial structures,including luminal and myoepithelial cells,their in vitro clonogenic progenitors and cells that produce similar structures in secondary transplants. The regenerated clonogenic progenitors provide an objective indicator of input mammary stem cell activity and allow the frequency and phenotype of these human mammary stem cells to be determined by limiting-dilution analysis. This new assay procedure sets the stage for investigations of mechanisms regulating normal human mammary stem cells (and possibly stem cells in other tissues) and their relationship to human cancer stem cell populations.
View Publication
产品类型:
产品号#:
05601
产品名:
EpiCult™-B 人培养基
文献
Conklin JF et al. ( 2012)
Nature communications 3 May 1244
The RB family is required for the self-renewal and survival of human embryonic stem cells.
The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood,limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest,differentiation and cell death. Conversely,inactivation of the entire RB family (RB,p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells,mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally,loss of RB family function promotes genomic instability in both human and mouse embryonic stem cells,uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Pettinato G et al. (NOV 2014)
PLoS ONE 9 11 e100742
ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells
We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin,+ROCKi/-spin,-ROCKi/+spin,and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions,including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation,elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment,and low-cost scalability,which will directly support automated,large-scale production of hEBs and hESC-derived cells needed for clinical,research,or therapeutic applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sugimine Y et al. (SEP 2016)
International journal of hematology
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Akopian V et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 247--258
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support,but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study,five separate laboratories,each with experience in human embryonic stem cell culture,used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods,with propagation in the presence of Knockout Serum Replacer,FGF-2,and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment,death,and differentiated morphology by phase contrast microscopy,for growth by serial cell counts,and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems,only the control and those based on two commercial media,mTeSR1 and STEMPRO,supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment,cell death,or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study,and the lack of success with other formulations from academic groups compared to previously published results,include: the complex combination of growth factors present in the commercial preparations; improved development,manufacture,and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.
View Publication