Generation of induced pluripotent stem cells from human Tenon's capsule fibroblasts.
PURPOSE This study aimed to develop a feasible and efficient method for generating embryonic stem cell (ESC)-like induced pluripotent stem (iPS) cells from human Tenon's capsule fibroblasts (HTFs) through the expression of a defined set of transcription factors,which will have significant application value for ophthalmic personalized regenerative medicine. METHODS HTFs were harvested from fresh samples,and reprogramming was induced by the exogenous expression of the four classic transcription factors,OCT-3/4,SOX-2,KLF-4,and C-MYC. The HTF-derived iPS (TiPS) cells were analyzed with phase contrast microscopy,real-time PCR,immunofluorescence,FACS analysis,alkaline phosphatase activity analysis,and a teratoma formation assay. Human ESC colonies were used as the positive control. RESULTS The resulting HTF-derived iPS cell colonies were indistinguishable from human ESC colonies regarding morphology,gene expression levels,pluripotent gene expression,alkaline phosphatase activity,and the ability to generate all three embryonic germ layers. CONCLUSIONS This study presents a simple,efficient,practical procedure for generating patient-tailored iPS cells from HTFs. These cells will serve as a valuable and preferred candidate donor cell population for ophthalmological regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lotti F et al. (DEC 2013)
The Journal of experimental medicine 210 13 2851--2872
Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A.
Many solid cancers display cellular hierarchies with self-renewing,tumorigenic stemlike cells,or cancer-initiating cells (CICs) at the apex. Whereas CICs often exhibit relative resistance to conventional cancer therapies,they also receive critical maintenance cues from supportive stromal elements that also respond to cytotoxic therapies. To interrogate the interplay between chemotherapy and CICs,we investigated cellular heterogeneity in human colorectal cancers. Colorectal CICs were resistant to conventional chemotherapy in cell-autonomous assays,but CIC chemoresistance was also increased by cancer-associated fibroblasts (CAFs). Comparative analysis of matched colorectal cancer specimens from patients before and after cytotoxic treatment revealed a significant increase in CAFs. Chemotherapy-treated human CAFs promoted CIC self-renewal and in vivo tumor growth associated with increased secretion of specific cytokines and chemokines,including interleukin-17A (IL-17A). Exogenous IL-17A increased CIC self-renewal and invasion,and targeting IL-17A signaling impaired CIC growth. Notably,IL-17A was overexpressed by colorectal CAFs in response to chemotherapy with expression validated directly in patient-derived specimens without culture. These data suggest that chemotherapy induces remodeling of the tumor microenvironment to support the tumor cellular hierarchy through secreted factors. Incorporating simultaneous disruption of CIC mechanisms and interplay with the tumor microenvironment could optimize therapeutic targeting of cancer.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Rustighi A et al. (JAN 2014)
EMBO molecular medicine 6 1 99--119
Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast.
Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse,and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically,following interaction with Pin1,Notch1 and Notch4,key regulators of cell fate,escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7$$. Functionally,we show that Fbxw7$$ acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity,but the establishment of a Notch/Pin1 active circuitry opposes this effect,thus promoting breast CSCs self-renewal,tumor growth and metastasis in vivo. In human breast cancers,despite Fbxw7$$ expression,high levels of Pin1 sustain Notch signaling,which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes,through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers.
View Publication
ABC transporters as phenotypic markers and functional regulators of stem cells.
Characterization of molecules with tightly controlled expression patterns during differentiation represents an approach to understanding regulation of hematopoietic stem cell commitment. The multidrug resistance-1 (MDR1) gene product,P-glycoprotein,and the breast cancer resistance protein (BCRP) are expressed differentially during hematopoiesis,with the highest levels in primitive bone marrow stem cell populations that are CD34(low) and CD34(-),respectively. Roles for ATP-binding cassette (ABC) transporter superfamily members in conferring drug resistance have been extensively described. However,recent hematopoietic overexpression studies have begun to reveal previously unknown roles for ABC transporter function in normal and malignant hematopoiesis. Expression of MDR1 and BCRP transporters in the myeloid lineage has been reported in blasts from acute myeloid leukemia,but very low to undetectable in normal myelomonocytic cells. Retroviral-mediated dysregulated expression of the MDR1 transporter resulted in increased hematopoietic repopulating activity and myeloproliferative disease in mice. A distinct functional role for the BCRP transporter as a negative regulator of hematopoietic repopulating activity has recently been demonstrated using the same approach. Additionally,the presence of BCRP expression specifically on hematopoietic side-population stem cells and neural stem/progenitors,makes BCRP an attractive candidate marker for isolation of stem cells with the ability to respond to diverse environmental cues. Regulation of stem cell biology by ABC transporters has emerged as an important new field of investigation. In light of these findings,it will be critical to further characterize this family of proteins in hematopoietic lineage-restricted stem cells and in pluripotent stem cells capable of crossing lineage barriers.
View Publication
产品类型:
产品号#:
产品名:
文献
Takahashi T et al. (APR 2003)
Circulation 107 14 1912--6
Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes.
BACKGROUND Embryonic stem (ES) cells are capable of self-renewal and differentiation into cellular derivatives of all 3 germ layers. In appropriate culture conditions,ES cells can differentiate into specialized cells,including cardiac myocytes,but the efficiency is typically low and the process is incompletely understood. METHODS AND RESULTS We evaluated a chemical library for its potential to induce cardiac differentiation of ES cells in the absence of embryoid body formation. Using ES cells stably transfected with cardiac-specific alpha-cardiac myosin heavy chain (MHC) promoter-driven enhanced green fluorescent protein (EGFP),880 compounds approved for human use were screened for their ability to induce cardiac differentiation. Treatment with ascorbic acid,also known as vitamin C,markedly increased the number of EGFP-positive cells,which displayed spontaneous and rhythmic contractile activity and stained positively for sarcomeric myosin and alpha-actinin. Furthermore,ascorbic acid induced the expression of cardiac genes,including GATA4,alpha-MHC,and beta-MHC in untransfected ES cells in a developmentally controlled manner. This effect of ascorbic acid on cardiac differentiation was not mimicked by the other antioxidants such as N-acetylcysteine,Tiron,or vitamin E. CONCLUSIONS Ascorbic acid induces cardiac differentiation in ES cells. This study demonstrates the potential for chemically modifying the cardiac differentiation program of ES cells.
View Publication
产品类型:
产品号#:
72132
产品名:
抗坏血酸(Ascorbic Acid)
文献
Bershteyn M et al. (MAR 2014)
Nature 507 7490 99--103
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells.
Ring chromosomes are structural aberrations commonly associated with birth defects,mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome,and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes,no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division,ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations,enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of /`chromosome therapy/' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition,our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control,which is of critical relevance to human development and disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Matsumoto T et al. (JAN 2014)
Biological & pharmaceutical bulletin 37 4 633--41
The GANT61, a GLI inhibitor, induces caspase-independent apoptosis of SK-N-LO cells.
GANT61 is a small-molecule inhibitor of glioma-associated oncogene 1 (GLI1)- and GLI2-mediated transcription at the nuclear level that exerts its effect by preventing DNA binding. It has been demonstrated to induce cell death against Ewing's sarcoma family tumor (ESFT) cell lines in a dose-dependent manner. The most sensitive cell line was SK-N-LO,which expresses the EWS-FLI1 fusion gene. SK-N-LO cells treated with GANT61 showed cellular and nuclear morphological changes,including cell shrinkage,chromatin condensation and nuclear fragmentation,in a concentration-dependent manner,as visualized by Hoechst 33342 staining. Furthermore,annexin V-propidium iodide (PI) double-staining revealed a significant increase in the number of late apoptotic cells. GANT61 induced a significant decrease in the proportion of cells in the S phase. Significant decrease of the protein levels of GLI2,survivin,cyclin A and claspin,and significant increase of p21 expression was also observed in the cells treated with GANT61. Moreover,poly (ADP-ribose) polymerase (PARP) cleavage was observed,but no cleavage of caspase-3 or -7,or any change in the expressions of Bcl-2 or p53 were observed. These findings suggest that GANT61 induces cell death of SK-N-LO cells in a caspase-independent manner,by inhibiting DNA replication in the S phase.
View Publication
产品类型:
产品号#:
73692
产品名:
GANT61
文献
Kim YY et al. (SEP 2016)
PLOS ONE 11 9 e0163812
Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells
Adverse effect of alcohol on neural function has been well documented. Especially,the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models,which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described,the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation,Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol's effect on JAK-STAT signaling pathway,neuroactive ligand-receptor interaction,Toll-like receptor (TLR) signaling pathway,cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3,which is associated with nociception,a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs,but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event associated with alcohol-related peripheral neuropathy of an enhanced nociceptive response.
View Publication
产品类型:
产品号#:
85850
85857
05835
05839
产品名:
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
文献
S. Omenetti et al. (jun 2019)
Immunity
The Intestine Harbors Functionally Distinct Homeostatic Tissue-Resident and Inflammatory Th17 Cells.
T helper 17 (Th17) cells are pathogenic in many inflammatory diseases,but also support the integrity of the intestinal barrier in a non-inflammatory manner. It is unclear what distinguishes inflammatory Th17 cells elicited by pathogens and tissue-resident homeostatic Th17 cells elicited by commensals. Here,we compared the characteristics of Th17 cells differentiating in response to commensal bacteria (SFB) to those differentiating in response to a pathogen (Citrobacter rodentium). Homeostatic Th17 cells exhibited little plasticity towards expression of inflammatory cytokines,were characterized by a metabolism typical of quiescent or memory T cells,and did not participate in inflammatory processes. In contrast,infection-induced Th17 cells showed extensive plasticity towards pro-inflammatory cytokines,disseminated widely into the periphery,and engaged aerobic glycolysis in addition to oxidative phosphorylation typical for inflammatory effector cells. These findings will help ensure that future therapies directed against inflammatory Th17 cells do not inadvertently damage the resident gut population.
View Publication
Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.
There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods,however,cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (˜50 days,10 passages tested,accumulative ˜>10(10)-fold expansion) with both high growth rate (˜20-fold expansion/7 days) and high volumetric yield (˜2.0%A-%10(7)%cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient,affordable glioblastoma TICs for drug discovery.
View Publication