Huat T et al. (APR 2015)
International Journal of Molecular Sciences 16 5 9693--9718
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF,(B) EGF + bFGF + IGF-1,and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation,microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs,30 were consistently expressed for minimum of two consecutive time intervals. In Group B,only miR-496 was up-regulated and 12 microRNAs,including the let-7 family,miR-1224,miR-125a-3p,miR-214,miR-22,miR-320,miR-708,and miR-93,were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22,miR-214,miR-125a-3p,miR-320 and let-7 family) are associated with reduction of apoptosis. Here,we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Traggiai E et al. (FEB 2008)
Stem cells (Dayton,Ohio) 26 2 562--9
Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients.
Human bone marrow multipotent mesenchymal stromal cells are progenitor cells that can be expanded in vitro and differentiate into various cells of mesodermal origin. They contribute to the bone marrow reticular niche,where mature B cells and long-lived plasma cells are maintained. Multipotent mesenchymal stromal cells were recently shown to modulate T- and B-cell proliferation and differentiation,dendritic cell maturation,and natural killer activity. These immunoregulatory properties encouraged a possible use of these cells to modulate autoimmune responses in humans. We studied the influence of bone marrow mesenchymal stem cells on highly purified B-cell subsets isolated from healthy donors and total B cells from pediatric systemic lupus erythematosus patients. Bone marrow mesenchymal stem cells promoted proliferation and differentiation into immunoglobulin-secreting cells of transitional and naive B cells stimulated with an agonist of Toll-like receptor 9,in the absence of B cell receptor triggering. They strongly enhanced proliferation and differentiation into plasma cells of memory B-cell populations. A similar effect was observed in response to polyclonal stimulation of B cells isolated from pediatric patients with systemic lupus erythematosus. This study casts important questions on bone marrow mesenchymal stem cells as a therapeutic tool in autoimmune diseases in which B-cell activation is crucially implicated in the pathogenesis of the disease.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
产品类型:
产品号#:
05445
05448
产品名:
MesenCult™ -ACF Plus培养基
MesenCult™-ACF Plus培养试剂盒
文献
Kwon C et al. (OCT 2011)
Nature cell biology 13 10 1244--51
Notch post-translationally regulates β-catenin protein in stem and progenitor cells.
Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-catenin signalling often intersect in stem and progenitor cells and regulate each other transcriptionally. The biological outcome of signalling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here,we show that membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-catenin protein. Notch-dependent regulation of β-catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did,however,require the endocytic adaptor protein Numb and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-catenin protein levels in stem and progenitor cells.
View Publication
Generating human intestinal tissue from pluripotent stem cells in vitro.
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids,pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction,the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step,3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors,and they proliferate and expand over 1-3 months to give rise to intestinal tissue,complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date,this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhou T et al. (DEC 2012)
Nature protocols 7 12 2080--9
Generation of human induced pluripotent stem cells from urine samples.
Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet,acquiring donor cells is,in most instances,an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances,as the isolation of urinary cells is simple (30 ml of urine are sufficient),cost-effective and universal (can be applied to any age,gender and race). Moreover,the entire procedure is reasonably quick--around 2 weeks for the urinary cell culture and 3-4 weeks for the reprogramming--and the yield of iPSC colonies is generally high--up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential,and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases,including those affecting the kidney.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
85850
85857
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
文献
Dai L et al. (FEB 2013)
The American journal of pathology 182 2 577--585
CD147-dependent heterogeneity in malignant and chemoresistant properties of cancer cells.
CD147 (alias emmprin or basigin),an integral plasma membrane glycoprotein and a member of the Ig superfamily,is widespread in normal tissues,but highly up-regulated in many types of malignant cancer cells. CD147 is multifunctional,with numerous binding partners. Recent studies suggest that complexes of CD147 with the hyaluronan receptor CD44 and associated transporters and receptor tyrosine kinases are enriched in the plasma membrane of cancer stem-like cells. Here,we show that subpopulations of tumor cell lines constitutively expressing high levels of cell-surface CD147 exhibit cancer stem-like cell properties; that is,they exhibit much greater invasiveness,anchorage-independent growth,spheroid formation,and drug resistance in vitro and higher tumorigenicity in vivo than those constitutively expressing low levels of cell-surface CD147. Primary CD147-rich cell subpopulations derived from mouse mammary adenocarcinomas also exhibit high levels of invasiveness and spheroid-forming capacity,whereas CD147-low cells do not. Moreover,localization at the plasma membrane of CD44,the EGF receptor,the ABCB1 and ABCG2 drug transporters,and the MCT4 monocarboxylate transporter is elevated in cells constitutively expressing high levels of cell-surface CD147. These results show that CD147 is associated with assembly of numerous pro-oncogenic proteins in the plasma membrane and may play a fundamental role in properties characteristic of cancer stem-like cells.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Mossadegh-Keller N et al. (MAY 2013)
Nature 497 7448 239--43
M-CSF instructs myeloid lineage fate in single haematopoietic stem cells.
Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival,expansion and differentiation of lineage-committed progenitors,but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction,the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors,leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF,also called CSF1),a myeloid cytokine released during infection and inflammation,can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs,independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo,high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.
View Publication
产品类型:
产品号#:
72472
72474
产品名:
GW2580
GW2580
文献
Kubo A et al. (APR 2004)
Development (Cambridge,England) 131 7 1651--62
Development of definitive endoderm from embryonic stem cells in culture.
The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process,we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs,either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus,we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and,as such,establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.
View Publication
We studied the immunoregulatory features of murine mesenchymal stem cells (MSCs) in vitro and in vivo. MSCs inhibited T-cell receptor (TCR)-dependent and -independent proliferation but did not induce apoptosis on T cells. Such inhibition was paired with a decreased interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha production and was partially reversed by interleukin-2 (IL-2). Thus,we used MSCs to treat myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. We injected intravenously 1 x 10(6) MSCs before disease onset (preventive protocol) and at different time points after disease occurrence (therapeutic protocol). MSC administration before disease onset strikingly ameliorated EAE. The therapeutic scheme was effective when MSCs were administered at disease onset and at the peak of disease but not after disease stabilization. Central nervous system (CNS) pathology showed decreased inflammatory infiltrates and demyelination in mice that received transplants of MSCs. T-cell response to MOG and mitogens from MSC-treated mice was inhibited and restored by IL-2 administration. Upon MSC transfection with the enhanced green fluorescent protein (eGFP),eGFP(+) cells were detected in the lymphoid organs of treated mice. These data suggest that the immunoregulatory properties of MSCs effectively interfere with the autoimmune attack in the course of EAE inducing an in vivo state of T-cell unresponsiveness occurring within secondary lymphoid organs.
View Publication
产品类型:
产品号#:
产品名:
文献
Goda C et al. (FEB 2006)
International immunology 18 2 233--40
Involvement of IL-32 in activation-induced cell death in T cells.
NK cell transcript 4 (NK4),now denoted as IL-32,was originally identified as a transcript whose expression was increased in activated NK cells. It has been very recently demonstrated that NK4 is secreted from several cells upon the stimulation of some inflammatory cytokines such as IL-18,IL-1beta,IFN-gamma and IL-12. Furthermore,NK4 induces production of tumor necrosis factor,macrophage inflammatory protein (MIP)-2 and IL-8 in monocytic cell lines,indicating that this factor would be involved in the inflammatory responses. Based on these findings,NK4 was renamed IL-32. However,the biological activities of IL-32 on other cell types remained undetermined. Furthermore,it was still argued whether IL-32 acts on cells from outside or inside the cells. In this article,we first report that expression of IL-32 was up-regulated in activated T cells and NK cells,and that IL-32beta was the predominantly expressed isoform in activated T cells. IL-32 was specifically expressed in T cells undergoing apoptosis and enforced expression of IL-32-induced apoptosis,whereas its down-regulation rescued the cells from apoptosis in HeLa cells. IL-32 existing in the supernatant would be derived from the cytoplasm of apoptotic cells. These results strongly indicated that IL-32 would be involved in activation-induced cell death in T cells,probably via its intracellular actions. Our present findings expand our understanding of the biological function of IL-32 and argue that IL-32 may act on cells,not only from the outside but also from the inside.
View Publication