Castro-Diaz N et al. (JUL 2014)
Genes and Development 28 13 1397--1409
Evolutionally dynamic L1 regulation in embryonic stem cells
Mobile elements are important evolutionary forces that challenge genomic integrity. Long interspersed element-1 (L1,also known as LINE-1) is the only autonomous transposon still active in the human genome. It displays an unusual pattern of evolution,with,at any given time,a single active L1 lineage amplifying to thousands of copies before getting replaced by a new lineage,likely under pressure of host restriction factors,which act notably by silencing L1 expression during early embryogenesis. Here,we demonstrate that in human embryonic stem (hES) cells,KAP1 (KRAB [Kruppel-associated box domain]-associated protein 1),the master cofactor of KRAB-containing zinc finger proteins (KRAB-ZFPs) previously implicated in the restriction of endogenous retroviruses,represses a discrete subset of L1 lineages predicted to have entered the ancestral genome between 26.8 million and 7.6 million years ago. In mice,we documented a similar chronologically conditioned pattern,albeit with a much contracted time scale. We could further identify an L1-binding KRAB-ZFP,suggesting that this rapidly evolving protein family is more globally responsible for L1 recognition. KAP1 knockdown in hES cells induced the expression of KAP1-bound L1 elements,but their younger,human-specific counterparts (L1Hs) were unaffected. Instead,they were stimulated by depleting DNA methyltransferases,consistent with recent evidence demonstrating that the PIWI-piRNA (PIWI-interacting RNA) pathway regulates L1Hs in hES cells. Altogether,these data indicate that the early embryonic control of L1 is an evolutionarily dynamic process and support a model in which newly emerged lineages are first suppressed by DNA methylation-inducing small RNA-based mechanisms before KAP1-recruiting protein repressors are selected.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pittenger MF et al. (APR 1999)
Science (New York,N.Y.) 284 5411 143--7
Multilineage potential of adult human mesenchymal stem cells.
Human mesenchymal stem cells are thought to be multipotent cells,which are present in adult marrow,that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues,including bone,cartilage,fat,tendon,muscle,and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic,chondrocytic,or osteocytic lineages. Individual stem cells were identified that,when expanded to colonies,retained their multilineage potential.
View Publication
产品类型:
产品号#:
72092
72132
72762
72764
产品名:
地塞米松(Dexamethasone)
抗坏血酸(Ascorbic Acid)
IBMX
IBMX
Inoue S et al. (AUG 2006)
Cancer research 66 15 7741--7
Inhibitory effects of B cells on antitumor immunity.
B-cell functions in antitumor immunity are not well understood. In this study,we evaluated the role of B cells in the development of antitumor immunity using Friend murine leukemia virus gag-expressing mouse EL-4 (EL-4 gag),D5 mouse melanoma,or MCA304 mouse sarcoma cells. To screen tumors for susceptibility to B-cell-deficient immune environments,spleen cells from naive C57BL/6 [wild-type (WT)] and B-cell knockout (BKO) mice were cultured with irradiated tumor cells in vitro. When cells were stimulated with EL-4 gag or D5 (but not MCA304 tumors),IFN-gamma production from CD8 T cells and natural killer cells was markedly decreased in WT compared with BKO cultures. IFN-gamma production was correlated with CD40 ligand expression on the tumor and inversely with interleukin-10 (IL-10) production by B cells. Sorted WT B cells produced more IL-10 than CD40 knockout (CD40KO) B cells when cocultured with EL-4 gag or D5 (but not MCA304). IFN-gamma production by BKO cells was reduced by the addition of sorted naive WT B cells (partially by CD40KO B cells) or recombinant mouse IL-10. In vivo tumor progression mirrored in vitro studies in that WT mice were unable to control tumor growth whereas EL-4 gag and D5 tumors (but not MCA304) were eliminated in BKO mice. Robust in vivo antitumor CTLs developed only in BKO tumor-challenged mice. Our studies provide the first mechanistic basis for the concept that B-cell depletion could therapeutically enhance antitumor immune responses to certain tumors by decreasing IL-10 production from B cells.
View Publication
产品类型:
产品号#:
18754
18754RF
产品名:
Rubin MR et al. (JAN 2011)
The Journal of clinical endocrinology and metabolism 96 1 176--86
Parathyroid hormone stimulates circulating osteogenic cells in hypoparathyroidism.
CONTEXT: The osteoanabolic properties of PTH may be due to increases in the number and maturity of circulating osteogenic cells. Hypoparathyroidism is a useful clinical model because this hypothesis can be tested by administering PTH. OBJECTIVE: The objective of the study was to characterize circulating osteogenic cells in hypoparathyroid subjects during 12 months of PTH (1-84) administration. DESIGN: Osteogenic cells were characterized using flow cytometry and antibodies against osteocalcin,an osteoblast-specific protein product,and stem cell markers CD34 and CD146. Changes in bone formation from biochemical markers and quadruple-labeled transiliac crest bone biopsies (0 and 3 month time points) were correlated with measurements of circulating osteogenic cells. SETTING: The study was conducted at a clinical research center. PATIENTS: Nineteen control and 19 hypoparathyroid patients were included in the study. INTERVENTION: Intervention included the administration of PTH (1-84). RESULTS: Osteocalcin-positive cells were lower in hypoparathyroid subjects than controls (0.7 ± 0.1 vs. 2.0 ± 0.1%; P textless 0.0001),with greater coexpression of the early cell markers CD34 and CD146 among the osteocalcin-positive cells in the hypoparathyroid subjects (11.0 ± 1.0 vs. 5.6 ± 0.7%; P textless 0.001). With PTH (1-84) administration,the number of osteogenic cells increased 3-fold (P textless 0.0001),whereas the coexpression of the early cell markers CD34 and CD146 decreased. Increases in osteogenic cells correlated with circulating and histomorphometric indices of osteoblast function: N-terminal propeptide of type I procollagen (R(2) = 0.4,P ≤ 0.001),bone-specific alkaline phosphatase (R(2) = 0.3,P textless 0.001),osteocalcin (R(2) = 0.4,P textless 0.001),mineralized perimeter (R(2) = 0.5,P textless 0.001),mineral apposition rate (R(2) = 0.4,P = 0.003),and bone formation rate (R(2) = 0.5,P textless 0.001). CONCLUSIONS: It is likely that PTH stimulates bone formation by stimulating osteoblast development and maturation. Correlations between circulating osteogenic cells and histomorphometric indices of bone formation establish that osteoblast activity is being identified by this methodology.
View Publication
产品类型:
产品号#:
05404
产品名:
Ishikawa T et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 826 103--114
Generation and hepatic differentiation of human iPS cells.
A method for the generation of human induced pluripotent stem (iPS) cells was established. This method employs adenovirus carrying the ecotropic retrovirus receptor mCAT1 and Moloney murine leukemia virus (MMLV)-based retroviral vectors carrying the four transcription factors POU5F1 (OCT3/4),KLF4,SOX2,and MYC (c-Myc) (Masaki H & Ishikawa T Stem Cell Res 1:105-15,2007). The differentiation of human iPS cells into hepatic cells was performed by a stepwise protocol (Song Z et al. Cell Res 19:1233-42,2009). These cells have potential as patient-specific in vitro models for studying disease etiology and could be used in drug discovery programs tailored to deal with genetic variations in drug efficacy and toxicity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang A and Liew CG (NOV 2012)
Current protocols in stem cell biology Chapter 5 SUPPL.23 Unit 5B.2
Genetic manipulation of human induced pluripotent stem cells
Human induced pluripotent stem cells (HIPSC) have tremendous value as a source of autologous cells for cellular transplantation in the treatment of degenerative diseases. The protocols described here address methods for large-scale genetic modification of HIPSCs. The first is an optimized method for transfecting HIPSCs cultured in feeder-free conditions. The second method allows nucleofection of trypsinized HIPSCs at an optimal cell density. Both methods enable robust generation of stable HIPSC transfectants within two weeks. Our protocols are highly reproducible and do not require optimization for individual HIPSC and human embryonic stem cell (HESC) lines.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
C. Xu et al. (oct 2001)
Nature biotechnology 19 10 971--4
Feeder-free growth of undifferentiated human embryonic stem cells.
Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system,hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1,which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype,stable proliferation rate,and high telomerase activity. Similar to cells cultured on feeders,hES cells maintained under feeder-free conditions expressed OCT-4,hTERT,alkaline phosphatase,and surface markers including SSEA-4,Tra 1-60,and Tra 1-81. In addition,hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus,the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.
View Publication
产品类型:
产品号#:
07181
产品名:
V. O. Boldrini et al. ( 2022)
Frontiers in immunology 13 750660
Cytotoxic B Cells in Relapsing-Remitting Multiple Sclerosis Patients.
BACKGROUND Emerging evidence of antibody-independent functions,as well as the clinical efficacy of anti-CD20 depleting therapies,helped to reassess the contribution of B cells during multiple sclerosis (MS) pathogenesis. OBJECTIVE To investigate whether CD19+ B cells may share expression of the serine-protease granzyme-B (GzmB),resembling classical cytotoxic CD8+ T lymphocytes,in the peripheral blood from relapsing-remitting MS (RRMS) patients. METHODS In this study,104 RRMS patients during different treatments and 58 healthy donors were included. CD8,CD19,Runx3,and GzmB expression was assessed by flow cytometry analyses. RESULTS RRMS patients during fingolimod (FTY) and natalizumab (NTZ) treatment showed increased percentage of circulating CD8+GzmB+ T lymphocytes when compared to healthy volunteers. An increase in circulating CD19+GzmB+ B cells was observed in RRMS patients during FTY and NTZ therapies when compared to glatiramer (GA),untreated RRMS patients,and healthy donors but not when compared to interferon-$\beta$ (IFN). Moreover,regarding Runx3,the transcriptional factor classically associated with cytotoxicity in CD8+ T lymphocytes,the expression of GzmB was significantly higher in CD19+Runx3+-expressing B cells when compared to CD19+Runx3- counterparts in RRMS patients. CONCLUSIONS CD19+ B cells may exhibit cytotoxic behavior resembling CD8+ T lymphocytes in MS patients during different treatments. In the future,monitoring cytotoxic" subsets might become an accessible marker for investigating MS pathophysiology and even for the development of new therapeutic interventions."
View Publication
产品类型:
产品号#:
17963
18000
17963RF
产品名:
EasySep™人B细胞富集试剂盒II(不去除CD43)
EasySep™磁极
RoboSep™ 人B细胞富集试剂盒II(不去除CD43)
B. R. Correa et al. ( 2018)
Scientific Reports 8 1
Preclinical in vitro models provide an essential tool to study cancer cell biology as well as aid in translational research,including drug target identification and drug discovery efforts. For any model to be clinically relevant,it needs to recapitulate the biology and cell heterogeneity of the primary tumor. We recently developed and described a conditional reprogramming (CR) cell technology that addresses many of these needs and avoids the deficiencies of most current cancer cell lines,which are usually clonal in origin. Here,we used the CR cell method to generate a collection of patient-derived cell cultures from non-small cell lung cancers (NSCLC). Whole exome sequencing and copy number variations are used for the first time to address the capability of CR cells to keep their tumor-derived heterogeneity. Our results indicated that these primary cultures largely maintained the molecular characteristics of the original tumors. Using a mutant-allele tumor heterogeneity (MATH) score,we showed that CR cells are able to keep and maintain most of the intra-tumoral heterogeneity,suggesting oligoclonality of these cultures. CR cultures therefore represent a pre-clinical lung cancer model for future basic and translational studies.
View Publication
D. Shishkova et al. (Sep 2025)
International Journal of Molecular Sciences 26 18
Isolation of Primary Human Saphenous Vein Endothelial Cells, Human Internal Thoracic Artery Endothelial Cells, and Human Adipose Tissue-Derived Microvascular Endothelial Cells from Patients Undergoing Coronary Artery Bypass Graft Surgery
Primary human endothelial cells represent an essential tool to model endothelial dysfunction and to screen interventions for its treatment. Here,we developed a protocol for the synchronous isolation of primary human saphenous vein endothelial cells (HSaVEC),human internal thoracic artery endothelial cells (HITAEC),and human microvascular endothelial cells (HMVEC) from SV and ITA utilized as conduits during coronary artery bypass graft surgery and from subcutaneous adipose tissue excised while providing an access to the heart. Treatment by collagenase type IV and magnetic separation with anti-CD31-antibody-coated beads ensured relatively high efficiency of the isolation (≈60% for HSaVEC,≈50% for HITAEC,and ≈20% for HMVEC) and high purity (≥99%) of isolated ECs within ≈2 weeks (HSaVEC),≈2–3 weeks (HITAEC),and ≈3–4 weeks (HMVEC). A colorimetric assay of cell viability and proliferation,as well as real-time bioimpedance monitoring using the xCELLigence instrument,demonstrated high proliferative activity in HSaVEC,HITAEC,and HMVEC,whilst the in vitro tube formation assay indicated their angiogenic potential. The isolation of HSaVEC,HITAEC,and HMVEC from patients undergoing coronary artery bypass graft surgery is a promising option to investigate endothelial heterogeneity,to interrogate endothelial responses to various stresses,and to pinpoint the optimal approaches for restoring endothelial homeostasis,thereby reproducing them within the bedside-to-bench-to-bedside concept.
View Publication
产品类型:
产品号#:
18000
产品名:
EasySep™磁极
Guilliams M et al. (MAR 2010)
Blood 115 10 1958--68
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells.
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA,we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived,migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells,a finding demonstrating that the presence of RA-producing,tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly,the production of RA by skin DCs was restricted to CD103(-) DCs,indicating that CD103 expression does not constitute a universal" marker for RA-producing mouse DCs. Finally
View Publication