Song L et al. (AUG 2016)
Colloids and surfaces. B,Biointerfaces 148 49--58
Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells.
Inefficient neural differentiation of human induced pluripotent stem cells (hiPSCs) motivates recent investigation of the influence of biophysical characteristics of cellular microenvironment,in particular nanotopography,on hiPSC fate decision. However,the roles of geometry and dimensions of nanotopography in neural lineage commitment of hiPSCs have not been well understood. The objective of this study is to delineate the effects of geometry,feature size and height of nanotopography on neuronal differentiation of hiPSCs. HiPSCs were seeded on equally spaced nanogratings (500 and 1000nm in linewidth) and hexagonally arranged nanopillars (500nm in diameter),each having a height of 150 or 560nm,and induced for neuronal differentiation in concert with dual Smad inhibitors. The gratings of 560nm height reduced cell proliferation,enhanced cytoplasmic localization of Yes-associated protein,and promoted neuronal differentiation (up to 60% βIII-tubulin(+) cells) compared with the flat control. Nanograting-induced cell polarity and cytoplasmic YAP localization were shown to be critical to the induced neural differentiation of hiPSCs. The derived neuronal cells express MAP2,Tau,glutamate,GABA and Islet-1,indicating the existence of multiple neuronal subtypes. This study contributes to the delineation of cell-nanotopography interactions and provides the insights into the design of nanotopography configuration for pluripotent stem cell neural lineage commitment.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Dexter TM et al. (JUN 1977)
Journal of cellular physiology 91 3 335--44
Conditions controlling the proliferation of haemopoietic stem cells in vitro.
A liquid culture system is described whereby proliferation of haemopoietic stem cells (CFU-S),production of granulocyte precursor cells (CFU-C),and extensive granulopoiesis can be maintained in vetro for several months. Such cultures consist of adherent and non-adherent populations of cells. The adherent population contains phagocytic mononuclear cells,epithelial" cells�
View Publication
Chevalier MF et al. ( 2015)
The Journal of Infectious Diseases 211 5 769--779
Phenotype Alterations in Regulatory T-Cell Subsets in Primary HIV Infection and Identification of Tr1-like Cells as the Main Interleukin 10-Producing CD4+ T Cells
BACKGROUND: Conventional regulatory T cells (Tregs) can suppress human immunodeficiency virus type 1 (HIV-1)-specific immune responses but cannot control immune activation in primary HIV infection. Here,we characterized Treg subsets,using recently defined phenotypic delineation,and analyzed the relative contribution of cell subsets to the production of immunosuppressive cytokines in primary HIV infection. METHODS: In a longitudinal prospective study,ex vivo phenotyping of fresh peripheral blood mononuclear cells from patients with primary HIV infection was performed at baseline and month 6 of follow-up to characterize Treg subsets,immune activation,and cytokine production in isolated CD4(+) T cells. RESULTS: The frequency of CD4(+)CD25(+)CD127(low) Tregs and the distribution between the naive,memory,and activated/memory Treg subsets was similar in patients and healthy donors. However,Tregs from patients with primary HIV infection showed peculiar phenotypic profiles,such as elevated FoxP3,ICOS,and CTLA-4 expression,with CTLA-4 expression strikingly increased in all Treg subsets both at baseline and month 6 of follow-up. The great majority of interleukin 10 (IL-10)-producing CD4(+) T cells were FoxP3(neg) (ie,Tr1-like cells). In contrast to conventional Tregs,Tr1-like cells were inversely correlated with immune activation and not associated with lower effector T-cell responses. CONCLUSION: FoxP3(neg) Tr1-like cells-major contributors to IL-10 production-may have a beneficial role by controlling immune activation in early HIV infection.
View Publication
产品类型:
产品号#:
15022
15062
21000
20119
20155
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
T. Yarahmadov et al. (aug 2022)
Infection and immunity 90 8 e0017422
Primary Infection by E. multilocularis Induces Distinct Patterns of Cross Talk between Hepatic Natural Killer T Cells and Regulatory T Cells in Mice.
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans,with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models,indicating that an appropriate adaptive immune response is required for the control of the disease. However,cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients,the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points,downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
View Publication
产品类型:
产品号#:
19851
产品名:
EasySep™小鼠T细胞分选试剂盒
文献
Wang W et al. (NOV 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 45 18283--8
Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1.
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4,Sox2,Klf4,and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming,but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs,which resembled ground-state mouse ES cells in growth properties,gene expression,and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.
View Publication
产品类型:
产品号#:
72722
72724
72964
产品名:
CD437
CD437
AM580
文献
Nakamura H et al. (OCT 2013)
Herpesviridae 4 1 2
Human cytomegalovirus induces apoptosis in neural stem/progenitor cells derived from induced pluripotent stem cells by generating mitochondrial dysfunction and endoplasmic reticulum stress
BACKGROUND Congenital human cytomegalovirus (HCMV) infection,a leading cause of birth defects,is most often manifested as neurological disorders. The pathogenesis of HCMV-induced neurological disorders is,however,largely unresolved,primarily because of limited availability of model systems to analyze the effects of HCMV infection on neural cells. METHODS An induced pluripotent stem cell (iPSC) line was established from the human fibroblast line MRC5 by introducing the Yamanaka's four factors and then induced to differentiate into neural stem/progenitor cells (NSPCs) by dual inhibition of the SMAD signaling pathway using Noggin and SB-431542. RESULTS iPSC-derived NSPCs (NSPC/iPSCs) were susceptible to HCMV infection and allowed the expression of both early and late viral gene products. HCMV-infected NSPC/iPSCs underwent apoptosis with the activation of caspase-3 and -9 as well as positive staining by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Cytochrome c release from mitochondria to cytosol was observed in these cells,indicating the involvement of mitochondrial dysfunction in their apoptosis. In addition,phosphorylation of proteins involved in the unfolded protein response (UPR),such as PKR-like eukaryotic initiation factor 2a kinase (PERK),c-Jun NH2-terminal kinase (JNK),inositol-requiring enzyme 1 (IRE1),and the alpha subunit of eukaryotic initiation factor 2 (eIF2$$) was observed in HCMV-infected NSPC/iPSCs. These results,coupled with the finding of increased expression of mRNA encoding the C/EBP-homologous protein (CHOP) and the detection of a spliced form of X-box binding protein 1 (XBP1) mRNA,suggest that endoplasmic reticulum (ER) stress is also involved in HCMV-induced apoptosis of these cells. CONCLUSIONS iPSC-derived NSPCs are thought to be a useful model to study HCMV neuropathogenesis and to analyze the mechanisms of HCMV-induced apoptosis in neural cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Fu X et al. (AUG 2010)
Tissue engineering. Part C,Methods 16 4 719--733
Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation.
Autologous feeder cells have been developed by various methods to minimize the presence of xenogenic entities in human embryonic stem cell (hESC) cultures. However,there was no systematic comparison of supportive effects of the feeder cells on hESC growth,nor comparison to the supportive effects of various feeder-free culture systems and standard mouse feeder cells. In this study,we aimed to compare the supportive abilities of autologous feeders derived either directly from H9 hESCs (H9 dF) or from outgrowth of embryoid body predifferentiated in suspension from H9 hESCs (H9 ebF). Mouse feeder system and matrigel-mTeSR1 feeder-free system were used as controls. H9 ebF was found to secrete more basic fibroblast growth factor in the conditioned medium than H9 dF did. The undifferentiated state of H9 hESCs was sustained more stably on H9 ebF than on H9 dF,and the differentiation potential of H9 hESCs on H9 ebF was higher than on H9 dF. We concluded that H9 ebF was an optimal autologous feeder to maintain the long-term undifferentiated state of hESCs in our current culture system. This study helps to standardize the autologous culture of hESCs. It also suggests a more definite direction for future development of xeno-free culture system for hESCs.
View Publication