S. Kimura et al. (apr 2019)
The Journal of experimental medicine 216 4 831--846
Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice.
Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation,however,remain to be fully elucidated. Here,we demonstrate that Sox8,a member of the SRY-related HMG box transcription factor family,is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression,which is the hallmark of functionally mature M cells. Furthermore,genetic deletion of Sox8 causes a marked decrease in the number of mature M cells,resulting in reduced antigen uptake in Peyer's patches. Consequently,juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
(Aug 2024)
Scientific Reports 14
Optimization of a human induced pluripotent stem cell-derived sensory neuron model for the in vitro evaluation of taxane-induced neurotoxicity
Human induced pluripotent stem cell-derived sensory neuron (iPSC-dSN) models are a valuable resource for the study of neurotoxicity but are affected by poor replicability and reproducibility,often due to a lack of optimization. Here,we identify experimental factors related to culture conditions that substantially impact cellular drug response in vitro and determine optimal conditions for improved replicability and reproducibility. Treatment duration and cell seeding density were both found to be significant factors,while cell line differences also contributed to variation. A replicable dose–response in viability was demonstrated after 48-h exposure to docetaxel or paclitaxel. Additionally,a replicable dose-dependent reduction in neurite outgrowth was demonstrated,demonstrating the applicability of the model for the examination of additional phenotypes. Overall,we have established an optimized iPSC-dSN model for the study of taxane-induced neurotoxicity.
View Publication
Wilson KD et al. (JUN 2009)
Stem cells and development 18 5 749--58
MicroRNA profiling of human-induced pluripotent stem cells.
MicroRNAs (miRNAs) are a newly discovered endogenous class of small noncoding RNAs that play important posttranscriptional regulatory roles by targeting mRNAs for cleavage or translational repression. Accumulating evidence now supports the importance of miRNAs for human embryonic stem cell (hESC) self-renewal,pluripotency,and differentiation. However,with respect to induced pluripotent stem cells (iPSC),in which embryonic-like cells are reprogrammed from adult cells using defined factors,the role of miRNAs during reprogramming has not been well-characterized. Determining the miRNAs that are associated with reprogramming should yield significant insight into the specific miRNA expression patterns that are required for pluripotency. To address this lack of knowledge,we use miRNA microarrays to compare the microRNA-omes" of human iPSCs
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lufino MMP et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 369--87
Episomal transgene expression in pluripotent stem cells.
Herpes simplex type 1 (HSV-1) amplicon vectors possess a number of features that make them excellent vectors for the delivery of transgenes into stem cells. HSV-1 amplicon vectors are capable of efficiently transducing both dividing and nondividing cells and since the virus is quite large,152 kb,it is of sufficient size to allow for incorporation of entire genomic DNA loci with native promoters. HSV-1 amplicon vectors can also be used to incorporate and deliver to cells a variety of sequences that allow extrachromosomal retention. These elements offer advantages over integrating vectors as they avoid transgene silencing and insertional mutagenesis. The construction of amplicon vectors carrying extrachromosomal retention elements,their packaging into HSV-1 viral particles,and the use of HSV-1 amplicons for stem cell transduction will be described.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ware CB et al. (MAR 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 12 4484--9
Derivation of naive human embryonic stem cells.
The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes,and forced expression of OCT4,KLF4,and KLF2 allows maintenance of human cells in a naïve state [Hanna J,et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid,followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics,antibody labeling profile,gene expression,X-inactivation profile,mitochondrial morphology,microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive,but attainable,process,leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.
View Publication
产品类型:
产品号#:
05860
05880
产品名:
Szkolnicka D et al. ( 2014)
Current protocols in stem cell biology 30 1G.5.1--------12
Deriving functional hepatocytes from pluripotent stem cells.
Despite major progress in the management of human liver disease,the only cure for a critically failing organ is liver transplantation. While a highly successful approach,the use of cadaveric organs as a routine treatment option is severely limited by organ availability. Therefore,the use of cell-based therapies has been explored to provide support for the failing liver. In addition to developing new treatments,there is also an imperative to develop better human models 'in a dish'. Such approaches will undoubtedly lead to a better understanding of the disease process,offering new treatment or preventative strategies. With both approaches in mind,we have developed robust hepatocyte differentiation methodologies for use with pluripotent stem cells. Importantly,our procedure is highly efficient (∼ 90%) and delivers active,drug-inducible,and predictive human hepatocyte populations.
View Publication
J. M. Crook and E. Tomaskovic-Crook ( 2017)
Methods in molecular biology (Clifton,N.J.) 1590 199--206
Culturing and Cryobanking Human Neural Stem Cells.
The discovery and study of human neural stem cells has advanced our understanding of human neurogenesis,and the development of novel therapeutics based on neural cell replacement. Here,we describe methods to culture and cryopreserve human neural stem cells (hNSCs) for expansion and banking. Importantly,the protocols ensure that the multipotency of hNSCs is preserved to enable differentiation to neurons and supporting neuroglia.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Cai J et al. (APR 2010)
Journal of Biological Chemistry 285 15 11227--34
Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells
The umbilical cord and placenta are extra-embryonic tissues of particular interest for regenerative medicine. They share an early developmental origin and are a source of vast amounts of cells with multilineage differentiation potential that are poorly immunogenic and without controversy. Moreover,these cells are likely exempt from incorporated mutations when compared with juvenile or adult donor cells such as skin fibroblasts or keratinocytes. Here we report the efficient generation of induced pluripotent stem cells (iPSCs) from mesenchymal cells of the umbilical cord matrix (up to 0.4% of the cells became reprogrammed) and the placental amniotic membrane (up to 0.1%) using exogenous factors and a chemical mixture. iPSCs from these 2 tissues homogeneously showed human embryonic stem cell (hESC)-like characteristics including morphology,positive staining for alkaline phosphatase,normal karyotype,and expression of hESC-like markers including Nanog,Rex1,Oct4,TRA-1-60,TRA-1-80,SSEA-3,and SSEA-4. Selected clones also formed embryonic bodies and teratomas containing derivatives of the 3 germ layers,and could as well be readily differentiated into functional motor neurons. Among other things,our cell lines may prove useful for comparisons between iPSCs derived from multiple tissues regarding the extent of the epigenetic reprogramming,differentiation ability,stability of the resulting lineages,and the risk of associated abnormalities.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nishimura AL et al. (MAR 2014)
PLoS ONE 9 3 e91269
Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells.
TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain,including the variant M337V,which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool,we designed and screened a set of siRNAs that specifically target TDP-43(M337V) mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43(wt) or GFP-TDP-43(M337V) or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions,which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA,cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43(M337V) allele in mammalian and patient cells,thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS.
View Publication