Diederichs S and Tuan RS (JUL 2014)
Stem cells and development 23 14 1--53
Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor.
Mesenchymal stem cells (MSCs) have a high potential for therapeutic efficacy in treating diverse musculoskeletal injuries and cardiovascular diseases,and for ameliorating the severity of graft-versus-host and autoimmune diseases. While most of these clinical applications require substantial cell quantities,the number of MSCs that can be obtained initially from a single donor is limited. Reports on the derivation of MSC-like cells from pluripotent stem cells (PSCs) are,thus,of interest,as the infinite proliferative capacity of PSCs opens the possibility to generate large amounts of uniform batches of MSCs. However,characterization of such MSC-like cells is currently inadequate,especially with regard to the question of whether these cells are equivalent or identical to MSCs. In this study,we have derived MSC-like cells [induced PSC-derived MSC-like progenitor cells (iMPCs)] using four different methodologies from a newly established induced PSC line reprogrammed from human bone marrow stromal cells (BMSCs),and compared the iMPCs directly with the originating parental BMSCs. The iMPCs exhibited typical MSC/fibroblastic morphology and MSC-typical surface marker profile,and they were capable of differentiation in vitro along the osteogenic,chondrogenic,and adipogenic lineages. However,compared with the parental BMSCs,iMPCs displayed a unique expression pattern of mesenchymal and pluripotency genes and were less responsive to traditional BMSC differentiation protocols. We,therefore,conclude that iMPCs generated from PSCs via spontaneous differentiation represent a distinct population of cells which exhibit MSC-like characteristics.
View Publication
产品类型:
产品号#:
07923
07903
85850
85857
产品名:
Dispase (1 U/mL)
0.1% 明胶水溶液
mTeSR™1
mTeSR™1
文献
Guilliams M et al. (MAR 2010)
Blood 115 10 1958--68
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells.
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA,we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived,migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells,a finding demonstrating that the presence of RA-producing,tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly,the production of RA by skin DCs was restricted to CD103(-) DCs,indicating that CD103 expression does not constitute a universal" marker for RA-producing mouse DCs. Finally�
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Dodla MC et al. (JAN 2011)
PLoS ONE 6 8 e23266
Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells
Human embryonic stem cells (hESCs) and their differentiated progeny allow for investigation of important changes/events during normal embryonic development. Currently most of the research is focused on proteinacous changes occurring as a result of differentiation of stem cells and little is known about changes in cell surface glycosylation patterns. Identification of cell lineage specific glycans can help in understanding their role in maintenance,proliferation and differentiation. Furthermore,these glycans can serve as markers for isolation of homogenous populations of cells. Using a panel of eight biotinylated lectins,the glycan expression of hESCs,hESCs-derived human neural progenitors (hNP) cells,and hESCs-derived mesenchymal progenitor (hMP) cells was investigated. Our goal was to identify glycans that are unique for hNP cells and use the corresponding lectins for cell isolation. Flow cytometry and immunocytochemistry were used to determine expression and localization of glycans,respectively,in each cell type. These results show that the glycan expression changes upon differentiation of hESCs and is different for neural and mesenchymal lineage. For example,binding of PHA-L lectin is low in hESCs (14±4.4%) but significantly higher in differentiated hNP cells (99±0.4%) and hMP cells (90±3%). Three lectins: VVA,DBA and LTL have low binding in hESCs and hMP cells,but significantly higher binding in hNP cells. Finally,VVA lectin binding was used to isolate hNP cells from a mixed population of hESCs,hNP cells and hMP cells. This is the first report that compares glycan expression across these human stem cell lineages and identifies significant differences. Also,this is the first study that uses VVA lectin for isolation for human neural progenitor cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Y. Tian et al. (oct 2022)
Redox biology 56 102454
Exosomal B7-H4 from irradiated glioblastoma cells contributes to increase FoxP3 expression of differentiating Th1 cells and promotes tumor growth.
BACKGROUND Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor. Although numerous postoperative therapeutic strategies have already been developed,including radiotherapy,tumors inevitably recur after several years of treatment. The coinhibitory molecule B7-H4 negatively regulates T cell immune responses and promotes immune escape. Exosomes mediate intercellular communication and initiate immune evasion in the tumor microenvironment (TME). OBJECTIVE This study aimed to determine whether B7-H4 is upregulated by radiation and loaded into exosomes,thus contributing to immunosuppression and enhancing tumor growth. METHODS Iodixanol density-gradient centrifugation and flow cytometry were used to verify exosomal B7-H4. Na{\{i}}ve T cells were differentiated into Th1 cells with or without exosomes. T cell-secreted cytokines and markers of T cell subsets were measured. Mechanistically the roles of B7-H4 and ALIX in GBM were analyzed using databases and tissue samples. Co-immunoprecipitation and pull-down assays were used to tested the direct interactions between ATM and ALIX or STAT3. In vitro ATM kinase assays western blotting and site-directed mutation were used to assess ATM-mediated STAT3 phosphorylation. Finally the contribution of exosomal B7-H4 to immunosuppression and tumor growth was investigated in vivo. RESULTS Exosomes from irradiated GBM cells decreased the anti-tumor immune response of T cell in vitro and in vivo via delivered B7-H4. Mechanistically irradiation promoted exosome biogenesis by increasing the ATM-ALIX interaction. Furthermore the ATM-phosphorylated STAT3 was found to directly binds to the B7-H4 promoter to increase its expression. Finally the radiation-induced increase in exosomal B7-H4 induced FoxP3 expression during Th1 cell differentiation via the activated STAT1 pathway. In vivo exosomal B7-H4 decreased the radiation sensitivity of GBM cells and reduced the survival of GBM mice model. CONCLUSION This study showed that radiation-enhanced exosomal B7-H4 promoted immunosuppression and tumor growth hence defining a direct link between irradiation and anti-tumor immune responses. Our results suggest that co-administration of radiotherapy with anti-B7-H4 therapy could improve local tumor control and identify exosomal B7-H4 as a potential tumor biomarker."
View Publication
产品类型:
产品号#:
19555
产品名:
EasySep™人Naïve CD4+ T细胞分选试剂盒
文献
Mangeot P-E et al. (SEP 2011)
Molecular therapy : the journal of the American Society of Gene Therapy 19 9 1656--66
Protein Transfer Into Human Cells by VSV-G-induced Nanovesicles.
Identification of new techniques to express proteins into mammal cells is of particular interest for both research and medical purposes. The present study describes the use of engineered vesicles to deliver exogenous proteins into human cells. We show that overexpression of the spike glycoprotein of the vesicular stomatitis virus (VSV-G) in human cells induces the release of fusogenic vesicles named gesicles. Biochemical and functional studies revealed that gesicles incorporated proteins from producer cells and could deliver them to recipient cells. This protein-transduction method allows the direct transport of cytoplasmic,nuclear or surface proteins in target cells. This was demonstrated by showing that the TetR transactivator and the receptor for the murine leukemia virus (MLV) envelope [murine cationic amino acid transporter-1 (mCAT-1)] were efficiently delivered by gesicles in various cell types. We further shows that gesicle-mediated transfer of mCAT-1 confers to human fibroblasts a robust permissiveness to ecotropic vectors,allowing the generation of human-induced pluripotent stem cells in level 2 biosafety facilities. This highlights the great potential of mCAT-1 gesicles to increase the safety of experiments using retro/lentivectors. Besides this,gesicles is a versatile tool highly valuable for the nongenetic delivery of functions such as transcription factors or genome engineering agents.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yu QC et al. (JUN 2012)
Blood 119 26 6243--54
APELIN promotes hematopoiesis from human embryonic stem cells.
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein-coupled APELIN receptor (APLNR). APLNR-positive cells,identified by binding of the fluoresceinated peptide ligand,APELIN (APLN),or an anti-APLNR mAb,were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs),increased the expression of hematoendothelial genes in differentiating hESCs,and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore,APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
View Publication
产品类型:
产品号#:
04436
产品名:
MethoCult™SF H4436
文献
Sangiolo D et al. (JAN 2014)
Cancer research 74 1 119--129
Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.
Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study,we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS,including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs,autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4,a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients,we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas,including putative sCSCs,supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Xu C (JAN 2006)
Methods in enzymology 420 18--37
Characterization and evaluation of human embryonic stem cells.
Human embryonic stem cells (hESCs) provide great opportunities for regenerative medicine,pharmacological and toxicological investigation,and the study of human embryonic development. These applications require proper derivation,maintenance,and extensive characterization of undifferentiated cells before being used for differentiation into cells of interest. Undifferentiated hESCs possess several unique features,including their extensive proliferation capacity in the undifferentiated state,ability to maintain a normal karyotype after long-term culture,expression of markers characteristic of stem cells,high constitutive telomerase activity,and capacity to differentiate into essentially all somatic cell types. This chapter will summarize the current development in culture conditions and provide technical details for the evaluation and characterization of hESCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Dalerba P et al. (JUN 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 24 10158--63
Phenotypic characterization of human colorectal cancer stem cells.
Recent observations indicate that,in several types of human cancer,only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the cancer stem cell" (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues�
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Jones RJ et al. (JUN 2009)
Blood 113 23 5920--6
Circulating clonotypic B cells in classic Hodgkin lymphoma.
Although Hodgkin and Reed-Sternberg (HRS) cells are B lymphoid cells,they are unlike any normal cells of that lineage. Moreover,the limited proliferative potential of HRS cells belies the clinical aggressiveness of Hodgkin lymphoma (HL). More than 20 years ago,the L428 HL cell line was reported to contain a small population of phenotypic B cells that appeared responsible for the continued generation of HRS cells. This observation,however,has never been corroborated,and such clonotypic B cells have never been documented in HL patients. We found that both the L428 and KM-H2 HL cell lines contained rare B-cell subpopulations responsible for the generation and maintenance of the predominant HRS cell population. The B cells within the HL cell lines expressed immunoglobulin light chain,the memory B-cell antigen CD27,and the stem cell marker aldehyde dehydrogenase (ALDH). Clonal CD27(+)ALDH(high) B cells,sharing immunoglobulin gene rearrangements with lymph node HRS cells,were also detected in the blood of most newly diagnosed HL patients regardless of stage. Although the clinical significance of circulating clonotypic B cells in HL remains unclear,these data suggest they may be the initiating cells for HL.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Chung J et al. (AUG 2009)
Current protocols in stem cell biology Chapter 5 August Unit 5A.3
Magnetic resonance imaging of human embryonic stem cells.
Magnetic resonance imaging (MRI) may emerge as an ideal non-invasive imaging modality to monitor stem cell therapy in the failing heart. This imaging modality generates any arbitrary tomographic view at high spatial and temporal resolution with exquisite intrinsic tissue contrast. This capability enables robust evaluation of both the cardiac anatomy and function. Traditionally,superparamagnetic iron oxide nanoparticle (SPIO) has been widely used for cellular MRI due to SPIO's ability to enhance sensitivity of MRI by inducing remarkable hypointense,negative signal,blooming effect" on T2*-weighted MRI acquisition. Recently�
View Publication