Sandströ et al. (FEB 2017)
Toxicology in vitro : an international journal published in association with BIBRA 38 124--135
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells,the possibility of generating human in vitro models has gained interest,as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues,using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers,paralleled by an increase in markers specific for mature neurons,astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons,but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required,these results indicate its potential usefulness for in vitro neurotoxicity testing.
View Publication
产品类型:
产品号#:
05860
05880
产品名:
Xia Y et al. (OCT 2016)
Journal of hepatology
Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions.
BACKGROUND & AIMS One major obstacle of hepatitis B virus (HBV) research is the lack of efficient cell culture system permissive for viral infection and replication. The aim of our study was to establish a robust HBV infection model by using hepatocyte-like cells (HLCs) derived from human pluripotent stem cells. METHODS HLCs were differentiated from human embryonic stem cells and induced pluripotent stem cells. Maturation of hepatocyte functions was determined. After HBV infection,total viral DNA,cccDNA,total viral RNA,pgRNA,HBeAg and HBsAg were measured. RESULTS More than 90% of the HLCs expressed strong signals of human hepatocyte markers,like albumin,as well as known host factors required for HBV infection,suggesting that these cells possessed key features of mature hepatocytes. Notably,HLCs expressed the viral receptor sodium-taurocholate cotransporting polypeptide more stably than primary human hepatocytes (PHHs). HLCs supported robust infection and some spreading of HBV. Finally,by using this model,we identified two host-targeting agents,genistin and PA452,as novel antivirals. CONCLUSIONS Stem cell-derived HLCs fully support HBV infection. This novel HLC HBV infection model offers a unique opportunity to advance our understanding of the molecular details of the HBV life cycle; to further characterize virus-host interactions and to define new targets for HBV curative treatment. LAY SUMMARY Our study used human pluripotent stem cells to develop hepatocyte-like cells (HLCs) capable of expressing hepatocyte markers and host factors important for HBV infection. These cells fully support HBV infection and virus-host interactions,allowing for the identification of two novel antiviral agents. Thus,stem cell-derived HLCs provide a highly physiologically relevant system to advance our understanding of viral life cycle and provide a new tool for antiviral drug screening and development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lindvall C et al. (NOV 2006)
The Journal of biological chemistry 281 46 35081--7
The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors,which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype,loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds,which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently,the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore,Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally,we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.
View Publication
产品类型:
产品号#:
05601
产品名:
EpiCult™-B 人培养基
Thomas AM et al. (MAR 2011)
Journal of controlled release : official journal of the Controlled Release Society 150 2 212--9
Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy.
5-Fluorouracil (5-FU) is a small,very membrane permeable drug that is poorly retained within the aqueous compartment of liposomal nanoparticles (LNP). To address this problem a novel method relying on formation of a ternary complex comprising copper,low molecular weight polyethylenimine (PEI) and 5-FU has been developed. More specifically,in the presence of entrapped copper and PEI,externally added 5-FU can be efficiently encapsulated (textgreater95%) in DSPC/Chol (1,2-Distearoyl-sn-Glycero-3-Phosphocholine/cholesterol; 55:45 mol%) liposomes (130-170 nm) to achieve drug-to-lipid ratios of 0.1 (mol:mol). Drug release studies completed using this LNP formulation of 5-FU demonstrated significant improvements in drug retention in vitro and in vivo. Plasma concentrations of 5-FU were 7- to 23-fold higher when the drug was administered intravenously to mice as the LNP 5-FU formulation compared to free 5-FU. Further,the therapeutic effects of the LNP 5-FU formulation,as determined in a HT-29 subcutaneous colorectal cancer model where treatment was given QDx5,was greater than that which could be achieved with free 5-FU when compared at equivalent doses. This is the first time an active loading method has been described for 5-FU. The use of ternary metal complexation strategy to encapsulate therapeutic agents may define a unique platform for preparation of LNP drug formulations.
View Publication
产品类型:
产品号#:
07100
36350
产品名:
L-谷氨酰胺
麦考伊氏5A培养基
Palmer JA et al. (AUG 2013)
Birth Defects Research Part B - Developmental and Reproductive Toxicology 98 4 343--363
Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening
A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study,metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites,along with a cytotoxicity endpoint,was then developed using a 9-point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity,an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy,but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity,100% specificity). The assay had a high concordance (≥75%) with existing in vivo models,demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Quintá et al. ( 2010)
Blood 115 15 3109--3117
Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms.
Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice,establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation,half of those with essential thrombocythemia or primary myelofibrosis do not,suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg,interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly,we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424,the first potent,selective,oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC(50)] = 281nM),and proliferation of JAK2V617F(+) Ba/F3 cells (IC(50) = 127nM). In primary cultures,INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F(+) polycythemia vera patients (IC(50) = 67nM) versus healthy donors (IC(50) textgreater 400nM). In a mouse model of JAK2V617F(+) MPN,oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines,and preferentially eliminated neoplastic cells,resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.
View Publication
B. P. Kleinstiver et al. (feb 2019)
Nature biotechnology
Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.
Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation,we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range,enabling targeting of many previously inaccessible PAMs. On average,enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a,and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants3 to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing,endogenous gene activation and C-to-T base editing,and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively,enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
(Apr 2024)
Frontiers in Neuroscience 18 228
Epigenetic alterations in creatine transporter deficiency: a new marker for dodecyl creatine ester therapeutic efficacy monitoring
Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the Slc6a8 gene. The impaired creatine uptake in the brain leads to developmental delays with intellectual disability. We hypothesized that deficient creatine uptake in CTD cerebral cells impact methylation balance leading to alterations of genes and proteins expression by epigenetic mechanism. In this study,we determined the status of nucleic acid methylation in both Slc6a8 knockout mouse model and brain organoids derived from CTD patients’ cells. We also investigated the effect of dodecyl creatine ester (DCE),a promising prodrug that increases brain creatine content in the mouse model of CTD. The level of nucleic acid methylation was significantly reduced compared to healthy controls in both in vivo and in vitro CTD models. This hypo-methylation tended to be regulated by DCE treatment in vivo. These results suggest that increased brain creatine after DCE treatment restores normal levels of DNA methylation,unveiling the potential of using DNA methylation as a marker to monitor the drug efficacy.
View Publication
产品类型:
产品号#:
100-0483
100-0484
85850
85857
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™1
mTeSR™1
F. E. Kapucu et al. (Jul 2024)
NPJ Parkinson's Disease 10
Human tripartite cortical network model for temporal assessment of alpha-synuclein aggregation and propagation in Parkinson’s Disease
Previous studies have shown that aggregated alpha-synuclein (α-s) protein,a key pathological marker of Parkinson’s disease (PD),can propagate between cells,thus participating in disease progression. This prion-like propagation has been widely studied using in vivo and in vitro models,including rodent and human cell cultures. In this study,our focus was on temporal assessment of functional changes during α-s aggregation and propagation in human induced pluripotent stem cell (hiPSC)-derived neuronal cultures and in engineered networks. Here,we report an engineered circular tripartite human neuronal network model in a microfluidic chip integrated with microelectrode arrays (MEAs) as a platform to study functional markers during α-s aggregation and propagation. We observed progressive aggregation of α-s in conventional neuronal cultures and in the exposed (proximal) compartments of circular tripartite networks following exposure to preformed α-s fibrils (PFF). Furthermore,aggregated forms propagated to distal compartments of the circular tripartite networks through axonal transport. We observed impacts of α-s aggregation on both the structure and function of neuronal cells,such as in presynaptic proteins,mitochondrial motility,calcium oscillations and neuronal activity. The model enabled an assessment of the early,middle,and late phases of α-s aggregation and its propagation during a 13-day follow-up period. While our temporal analysis suggested a complex interplay of structural and functional changes during the in vitro propagation of α-s aggregates,further investigation is required to elucidate the underlying mechanisms. Taken together,this study demonstrates the technical potential of our introduced model for conducting in-depth analyses for revealing such mechanisms. Subject terms: Parkinson's disease,Neurological models
View Publication
产品类型:
产品号#:
05790
产品名:
BrainPhys™神经元培养基
Yang et al. (Nov 2024)
PLOS ONE 19 11
Identification of small molecule agonists of fetal hemoglobin expression for the treatment of sickle cell disease
Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression,we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus,which codes for γ-globin protein,a component of HbF. Employing this reporter cell line,we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA). Among them,10 compounds were confirmed for their ability to induce HbF in the HUDEP2 cell line. These include several known HbF inducers,such as pomalidomide,lenalidomide,decitabine,idoxuridine,and azacytidine,which validate the translational nature of this screening platform. We identified avadomide,autophinib,triciribine,and R574 as novel HbF inducers from these screens. We orthogonally confirmed HbF induction activities of the top hits in both parental HUDEP2 cells as well as in human primary CD34+ hematopoietic stem and progenitor cells (HSPCs). Further,we demonstrated that pomalidomide and avadomide,but not idoxuridine,induced HbF expression through downregulation of several transcriptional repressors such as BCL11A,ZBTB7A,and IKZF1. These studies demonstrate a robust phenotypic screening workflow that can be applied to large-scale small molecule profiling campaigns for the discovery of targets and pathways,as well as novel therapeutics for sickle cell disease and other β-hemoglobinopathies.
View Publication