Radrizzani M et al. ( 2014)
Journal of translational medicine 12 276
Bone marrow-derived cells for cardiovascular cell therapy: an optimized GMP method based on low-density gradient improves cell purity and function.
BACKGROUND Cardiovascular cell therapy represents a promising field,with several approaches currently being tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study (Bone marrow derived cell therapy in the stable phase of chronic ischemic heart disease") consists of fresh mononuclear cells (MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard Ficoll-Paque. Cells are tested for safety (sterility�
View Publication
产品类型:
产品号#:
05420
05429
05424
05900
05950
产品名:
Shetty S et al. (MAR 2012)
International journal of hematology 95 3 274--81
Utility of a column-free cell sorting system for separation of plasma cells in multiple myeloma FISH testing in clinical laboratories.
Targeted FISH analysis is an essential component of the management of plasma cell myeloma for identification of cytogenetic abnormalities. The purpose of this study was to evaluate the column-free method,RoboSep® (RS),for sorting CD138-expressing cells in bone marrow aspirates. Comparative analysis of column-based and RS methodologies was carried out on 54 paired bone marrow aspirate validation samples from patients undergoing work-up for plasma cell dyscrasia. Abnormalities detected by FISH analysis using an IGH@/CCND1 probe set were seen in 54% with RS,and 44% with column-based. We found a statistically significant difference between the yield of abnormalities detected in paired positive cases (p = 0.0001). An additional 183 consecutive post-validation samples sorted by RS showed recurrent genetic abnormalities in 85/120 (71%) of successfully sorted samples with ≥ 1% plasma cells but in none of 63 samples in which FISH analysis was completed on samples that could not be sorted due to insufficient plasma cells upon cell sorting. The column-free method successfully sorted PC,when present in ≥ 1% of cells,for detection of abnormalities by FISH. Furthermore,our data suggest that FISH analysis should not be performed on samples with an inadequate yield at the cell selection step.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
G. Schiroli et al. (apr 2019)
Cell stem cell 24 4 551--565.e8
Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response.
Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However,responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here,we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction,cell-cycle progression,and transcriptional responses in HSPC subpopulations,with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation,constraining proliferation,yield,and engraftment of edited HSPCs. However,functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs.
View Publication
产品类型:
产品号#:
04434
04444
72912
72914
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Nakamura H et al. (OCT 2013)
Herpesviridae 4 1 2
Human cytomegalovirus induces apoptosis in neural stem/progenitor cells derived from induced pluripotent stem cells by generating mitochondrial dysfunction and endoplasmic reticulum stress
BACKGROUND Congenital human cytomegalovirus (HCMV) infection,a leading cause of birth defects,is most often manifested as neurological disorders. The pathogenesis of HCMV-induced neurological disorders is,however,largely unresolved,primarily because of limited availability of model systems to analyze the effects of HCMV infection on neural cells. METHODS An induced pluripotent stem cell (iPSC) line was established from the human fibroblast line MRC5 by introducing the Yamanaka's four factors and then induced to differentiate into neural stem/progenitor cells (NSPCs) by dual inhibition of the SMAD signaling pathway using Noggin and SB-431542. RESULTS iPSC-derived NSPCs (NSPC/iPSCs) were susceptible to HCMV infection and allowed the expression of both early and late viral gene products. HCMV-infected NSPC/iPSCs underwent apoptosis with the activation of caspase-3 and -9 as well as positive staining by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Cytochrome c release from mitochondria to cytosol was observed in these cells,indicating the involvement of mitochondrial dysfunction in their apoptosis. In addition,phosphorylation of proteins involved in the unfolded protein response (UPR),such as PKR-like eukaryotic initiation factor 2a kinase (PERK),c-Jun NH2-terminal kinase (JNK),inositol-requiring enzyme 1 (IRE1),and the alpha subunit of eukaryotic initiation factor 2 (eIF2$$) was observed in HCMV-infected NSPC/iPSCs. These results,coupled with the finding of increased expression of mRNA encoding the C/EBP-homologous protein (CHOP) and the detection of a spliced form of X-box binding protein 1 (XBP1) mRNA,suggest that endoplasmic reticulum (ER) stress is also involved in HCMV-induced apoptosis of these cells. CONCLUSIONS iPSC-derived NSPCs are thought to be a useful model to study HCMV neuropathogenesis and to analyze the mechanisms of HCMV-induced apoptosis in neural cells.
View Publication
Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.
Recently,vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However,it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here,we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted,WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery,T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells,whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells,but not the virus-specific T cells,displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells,the animals did not develop autoimmunity,and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells.
View Publication
产品类型:
产品号#:
09600
09650
19756
19756RF
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Pipino C et al. (OCT 2014)
Cellular reprogramming 16 5 331--344
Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking.
Trisomy 21 is the most common chromosomal abnormality and is associated primarily with cardiovascular,hematological,and neurological complications. A robust patient-derived cellular model is necessary to investigate the pathophysiology of the syndrome because current animal models are limited and access to tissues from affected individuals is ethically challenging. We aimed to derive induced pluripotent stem cells (iPSCs) from trisomy 21 human mid-trimester amniotic fluid stem cells (AFSCs) and describe their hematopoietic and neurological characteristics. Human AFSCs collected from women undergoing prenatal diagnosis were selected for c-KIT(+) and transduced with a Cre-lox-inducible polycistronic lentiviral vector encoding SOX2,OCT4,KLF-4,and c-MYC (50,000 cells at a multiplicity of infection (MOI) 1-5 for 72 h). The embryonic stem cell (ESC)-like properties of the AFSC-derived iPSCs were established in vitro by embryoid body formation and in vivo by teratoma formation in RAG2(-/-),$\$-chain(-/-),C2(-/-) immunodeficient mice. Reprogrammed cells retained their cytogenetic signatures and differentiated into specialized hematopoietic and neural precursors detected by morphological assessment,immunostaining,and RT-PCR. Additionally,the iPSCs expressed all pluripotency markers upon multiple rounds of freeze-thawing. These findings are important in establishing a patient-specific cellular platform of trisomy 21 to study the pathophysiology of the aneuploidy and for future drug discovery.
View Publication
产品类型:
产品号#:
04434
04444
05850
05857
05870
05875
07909
85850
85857
85870
85875
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
IV型胶原酶(1mg /mL)
mTeSR™1
mTeSR™1
C. T. Magawa et al. ( 2022)
Frontiers in physiology 13 947723
Identification of transient receptor potential melastatin 3 proteotypic peptides employing an efficient membrane protein extraction method for natural killer cells.
Introduction: Mutations and misfolding of membrane proteins are associated with various disorders,hence they make suitable targets in proteomic studies. However,extraction of membrane proteins is challenging due to their low abundance,stability,and susceptibility to protease degradation. Given the limitations in existing protocols for membrane protein extraction,the aim of this investigation was to develop a protocol for a high yield of membrane proteins for isolated Natural Killer (NK) cells. This will facilitate genetic analysis of membrane proteins known as transient receptor potential melastatin 3 (TRPM3) ion channels in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) research. Methods: Two protocols,internally identified as Protocol 1 and 2,were adapted and optimized for high yield protein extraction. Protocol 1 utilized ultrasonic and salt precipitation,while Protocol 2 implemented a detergent and chloroform/methanol approach. Protein concentrations were determined by the Pierce Bicinchoninic Acid (BCA) and the Bio-Rad DC (detergent compatible) protein assays according to manufacturer's recommendation. Using Protocol 2,protein samples were extracted from NK cells of n = 6 healthy controls (HC) and n = 4 ME/CFS patients. In silico tryptic digest and enhanced signature peptide (ESP) predictor were used to predict high-responding TRPM3 tryptic peptides. Trypsin in-gel digestion was performed on protein samples loaded on SDS-PAGE gels (excised at 150-200 kDa). A liquid chromatography-multiple reaction monitoring (LC-MRM) method was optimized and used to evaluate the detectability of TRPM3 n = 5 proteotypic peptides in extracted protein samples. Results: The detergent-based protocol protein yield was significantly higher (p < 0.05) compared with the ultrasonic-based protocol. The Pierce BCA protein assay showed more reproducibility and compatibility compared to the Bio-Rad DC protein assay. Two high-responding tryptic peptides (GANASAPDQLSLALAWNR and QAILFPNEEPSWK) for TRPM3 were detectable in n = 10 extracted protein samples from NK cells isolated from HC and ME/CFS patients. Conclusion: A method was optimized for high yield protein extraction from human NK cells and for the first time TRPM3 proteotypic peptides were detected using LC-MRM. This new method provides for future research to assess membrane protein structural and functional relationships,particularly to facilitate proteomic investigation of TRPM3 ion channel isoforms in NK cells in both health and disease states,such as ME/CFS.
View Publication
产品类型:
产品号#:
19055
20144
产品名:
EasySep™人NK细胞富集试剂盒
EasySep™缓冲液
Lu HF et al. (DEC 2012)
Biomaterials 33 36 9179--87
Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.
Developing an efficient culture system for controlled human pluripotent stem cell (hPSC) differentiation into selected lineages is a major challenge in realizing stem cell-based clinical applications. Here,we report the use of chitin-alginate 3D microfibrous scaffolds,previously developed for hPSC propagation,to support efficient neuronal differentiation and maturation under chemically defined culture conditions. When treated with neural induction medium containing Noggin/retinoic acid,the encapsulated cells expressed much higher levels of neural progenitor markers SOX1 and PAX6 than those in other treatment conditions. Immunocytochemisty analysis confirmed that the majority of the differentiated cells were nestin-positive cells. Subsequently transferring the scaffolds to neuronal differentiation medium efficiently directed these encapsulated neural progenitors into mature neurons,as detected by RT-PCR and positive immunostaining for neuron markers βIII tubulin and MAP2. Furthermore,flow cytometry confirmed that textgreater90% βIII tubulin-positive neurons was achieved for three independent iPSC and hESC lines,a differentiation efficiency much higher than previously reported. Implantation of these terminally differentiated neurons into SCID mice yielded successful neural grafts comprising MAP2 positive neurons,without tumorigenesis,suggesting a potential safe cell source for regenerative medicine. These results bring us one step closer toward realizing large-scale production of stem cell derivatives for clinical and translational applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cipriano AF et al. (APR 2013)
Journal of Materials Science: Materials in Medicine 24 4 989--1003
In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells
Magnesium alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When designed for medical applications,these alloys must have suitable degradation properties,i.e.,their degradation rate should not exceed the rate at which the degradation products can be excreted from the body. Cellular responses and tissue integration around the Mg-based implants are critical for clinical success. Four magnesium–zinc–strontium (ZSr41) alloys were developed in this study. The degradation properties of the ZSr41 alloys and their cytocompatibility were studied using an in vitro human embryonic stem cell (hESC) model due to the greater sensitivity of hESCs to known toxicants which allows to potentially detect toxicological effects of new biomaterials at an early stage. Four distinct ZSr41 alloys with 4 wt% zinc and a series of strontium compositions (0.15,0.5,1,and 1.5 wt% Sr) were produced through metallurgical processing. Their degradation was characterized by measuring total mass loss of samples and pH change in the cell culture media. The concentration of Mg ions released from ZSr41 alloy into the cell culture media was analyzed using inductively coupled plasma atomic emission spectroscopy. Surface microstructure and composition before and after culturing with hESCs were characterized using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Pure Mg was used as a control during cell culture studies. Results indicated that the Mg–Zn–Sr alloy with 0.15 wt% Sr provided slower degradation and improved cytocompatibility as compared with pure Mg control.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
van der Meer AD et al. (SEP 2013)
Lab on a Chip 13 18 3562--3568
Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device
Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here,we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells,human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h,the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell–cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels,inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity,highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary,we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future,the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vares G et al. ( 2013)
PloS one 8 10 e77124
Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.
Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs,we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells,progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression),which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.
View Publication