Brafman DA ( 2015)
Methods in molecular biology (Clifton,N.J.) 1212 87--102
Generation, Expansion, and Differentiation of Human Pluripotent Stem Cell (hPSC) Derived Neural Progenitor Cells (NPCs).
Human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs),a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS),could provide an unlimited source of cells for neural-related cell-based therapies and disease modeling. However,the use of NPCs for the study and treatment of a variety of debilitating neurological diseases requires the development of scalable and reproducible protocols for their generation,expansion,characterization,and neuronal differentiation. Here,we describe a serum-free method for the stepwise generation of NPCs from hPSCs through the sequential formation of embryoid bodies (EBs) and neuro-epithelial-like rosettes. NPCs isolated from neural rosette cultures can be homogenously expanded while maintaining high expression of pan-neural markers such as SOX1,SOX2,and Nestin. Finally,this protocol allows for the robust differentiation of NPCs into microtubule-associated protein 2 (MAP2) and β-Tubulin-III (β3T) positive neurons.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Liu J et al. (NOV 2014)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28 11 4642--4656
A reciprocal antagonism between miR-376c and TGF-$\$ regulates neural differentiation of human pluripotent stem cells.
Differentiation of neural lineages from human pluripotent stem cells (hPSCs) raises the hope of generating functional cells for the treatment of neural diseases. However,current protocols for differentiating hPSCs into neural lineages remain inefficient and largely variable between different hPSC lines. We report that microRNA 376c (miR-376c) significantly enhanced neural differentiation of hPSCs in a defined condition by suppressing SMAD4,the co-SMAD for TGF-β signaling. Downstream,SMAD4 directly bound and suppressed PAX6,the critical neural lineage specification factor. Interestingly,we also found that SMAD4 binds and suppresses miR-376c clusters in undifferentiated hESCs. In summary,our findings revealed a reciprocal antagonism between miR-376c and SMAD signaling that regulates cell fate during human neural differentiation.-Liu,J.,Wang,L.,Su,Z.,Wu,W.,Cai,X.,Li,D.,Hou,J.,Pei,D.,Pan,G. A reciprocal antagonism between miR-376c and TGF-β signaling regulates neural differentiation of hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
D'Aiuto L et al. (OCT 2014)
Organogenesis 10 4 365--377
Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature,differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF,NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Luo C et al. (APR 2016)
ACS Applied Materials and Interfaces 8 13 8367--8375
Improving the Gene Transfection in Human Embryonic Stem Cells: Balancing with Cytotoxicity and Pluripotent Maintenance
Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however,the transduction efficiency remains very low. Although existing evidence revealed the type,size,and zeta potential of vector affect gene transfection efficiency in cells,the systematic study in hESCs is scarce. In this study,using poly(amidoamine) (PAMAM) dendrimers ended with amine,hydroxyl,or carboxyl as model,we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection. We found that in culture medium of mTeSR the particle sizes of G5,G7,G4.5COOH,and G5OH were around 5 nm and G1 had a smaller size of 3.14 nm. G5 and G7 had a slight and significant positive zeta potential,respectively,whereas G1 was slightly negative,and G4.5COOH and G5OH were significantly negative. We demonstrated that only amine-terminated dendrimers accomplished gene transfection in hESCs,which is greater than that from Lipofectamine 2000 transfection. Ten micromolar G5 had the greatest efficiency and was better than 1000 μM G1. Only a low concentration (0.5 and 1 μM) of G7 realized gene delivery. Amine-ended dendrimers,especially with higher generations,were detrimental to the growth and pluripotent maintenance of hESCs. In contrast,similarly sized hydroxyl- and carboxyl-terminated dendrimers exerted much lower cytotoxicity,in which carboxyl-terminated dendrimer maintained pluripotency of hESCs. We also confirmed the endocytosis into and significant exocytosis from hESCs using FITC-labeled G5 dendrimer. These results suggested that careful considerations of size,concentration,and zeta potential,particularly the identity and position of groups,as well as minimized exocytosis in the design of a vector for hESC gene delivery are necessary,which helps to better design an effective vector in hESC gene transduction.
View Publication
Yanagihara K et al. (DEC 2016)
Stem cells and development 25 24 1884--1897
Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells.
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However,the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study,we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line,H9,which is known to differentiate into hepatocytes,and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs,hPSC-derived hepatoblast-like differentiated cells,and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus,our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sutherland HJ et al. (OCT 1989)
Blood 74 5 1563--70
Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro.
To develop a purification strategy for isolating the most primitive hematopoietic stem cells present in normal human marrow we have combined cell separation techniques with an assay for cells that initiate sustained hematopoiesis in vitro in the presence of irradiated human marrow adherent cells. These feeders" were established by subculturing 2- to 6-week-old primary long-term marrow culture adherent layers at a density of 3 x 10(4) irradiated cells per square centimeter. Test "long-term culture (LTC)-initiating cells" were plated on top of the feeders and the cocultures then maintained as standard long-term marrow cultures with half-media changes and removal of half of the nonadherent cells each week. The total number of myeloid�
View Publication
产品类型:
产品号#:
05150
05350
产品名:
MyeloCult™H5100
Moll R et al. (NOV 1982)
Cell 31 1 11--24
The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.
A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells
Regulated cell death is a key component of the innate immune response,which provides the first line of defense against infection and homeostatic perturbations. However,cell death can also drive pathogenesis. The most well-defined cell death pathways can be categorized as nonlytic (apoptosis) and lytic (pyroptosis,necroptosis,and PANoptosis). While specific triggers are known to induce each of these cell death pathways,it is unclear whether all cell types express the cell death proteins required to activate these pathways. Here,we assessed the protein expression and compared the responses of immune and non-immune cells of human and mouse origin to canonical pyroptotic (LPS plus ATP),apoptotic (staurosporine),necroptotic (TNF-α plus z-VAD),and PANoptotic (influenza A virus infection) stimuli. When compared to fibroblasts,both mouse and human innate immune cells,macrophages,expressed higher levels of cell death proteins and activated cell death effectors more robustly,including caspase-1,gasdermins,caspase-8,and RIPKs,in response to specific stimuli. Our findings highlight the importance of considering the cell type when examining the mechanisms regulating inflammation and cell death. Improved understanding of the cell types that contain the machinery to execute different forms of cell death and their link to innate immune responses is critical to identify new strategies to target these pathways in specific cellular populations for the treatment of infectious diseases,inflammatory disorders,and cancer.
View Publication
产品类型:
产品号#:
19669
产品名:
EasySep™ Direct人单核细胞分选试剂盒
Bö et al. (DEC 2005)
Journal of Immunological Methods 307 1-2 13--23
Establishment of a strategy for the rapid generation of a monoclonal antibody against the human protein SNEV (hNMP200) by flow-cytometric cell sorting
The screening for antigen-specific hybridoma cells with adequate production rates is still a time-,labour- and money-consuming procedure. A reduction in cell culture testing by specifically selecting those fused cells that produce antibody could therefore make hybridoma technology more attractive,even for small research groups or for newly discovered proteins at an early stage of research. Additional problems,such as the requirement to produce sufficient amounts of the unknown protein at a purity that allows specific immunisation of mice and testing of the resulting hybridoma clones,also need to be overcome. Here we present a new strategy to isolate rapidly and efficiently monoclonal antibodies against new proteins,for which only sequence information at the DNA level is known. The strategy consists of fusion of the protein to a hexa-His-tag to allow easy purification,production in yeast and insect cells to reduce background immunisation with host cell proteins and the selection of IgG-producing hybridoma cells by flow-cytometric cell sorting using the affinity matrix secretion assay technique. ?? 2005 Elsevier B.V. All rights reserved.
View Publication
HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells.
Infection with human immunodeficiency virus 1 (HIV-1) results in the dissemination of virus to gut-associated lymphoid tissue. Subsequently,HIV-1 mediates massive depletion of gut CD4+ T cells,which contributes to HIV-1-induced immune dysfunction. The migration of lymphocytes to gut-associated lymphoid tissue is mediated by integrin alpha4beta7. We demonstrate here that the HIV-1 envelope protein gp120 bound to an activated form of alpha4beta7. This interaction was mediated by a tripeptide in the V2 loop of gp120,a peptide motif that mimics structures presented by the natural ligands of alpha4beta7. On CD4+ T cells,engagement of alpha4beta7 by gp120 resulted in rapid activation of LFA-1,the central integrin involved in the establishment of virological synapses,which facilitate efficient cell-to-cell spreading of HIV-1.
View Publication
产品类型:
产品号#:
19052
19052RF
19055
19055RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Caron G et al. (AUG 2005)
Journal of immunology (Baltimore,Md. : 1950) 175 3 1551--7
Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells.
TLRs are involved in innate cell activation by conserved structures expressed by microorganisms. Human T cells express the mRNA encoding most of TLRs. Therefore,we tested whether some TLR ligands may modulate the function of highly purified human CD4+ T lymphocytes. We report that,in the absence of APCs,flagellin (a TLR5 ligand) and R-848 (a TLR7/8 ligand) synergized with suboptimal concentrations of TCR-dependent (anti-CD3 mAb) or -independent stimuli (anti-CD2 mAbs or IL-2) to up-regulate proliferation and IFN-gamma,IL-8,and IL-10 but not IL-4 production by human CD4+ T cells. No effect of poly(I:C) and LPS,ligands for TLR3 and TLR4,respectively,was detected. We also observed that CD4+CD45RO+ memory T cell responses to TLR ligands were more potent than those observed with CD4+CD45RA+ naive T cells. Moreover,among the memory T cells,CCR7- effector cells were more sensitive to TLR ligands than CCR7+ central memory cells. These data demonstrate for the first time a direct effect of TLR5 and TLR7/8 ligands on human T cells,and highlight an innate arm in T cell functions. They also suggest that some components from invading microorganisms may directly stimulate effector memory T cells located in tissues by up-regulating cytokine and chemokine production.
View Publication