Graichen R et al. (APR 2008)
Differentiation 76 4 357--70
Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK.
Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here,we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in differentiated cell populations with more than 10% cardiomyocytes without further enrichment. By screening candidate molecules,we have identified SB203580,a specific p38 MAP kinase inhibitor,as a potent promoter of hESC-cardiogenesis. SB203580 at concentrations textless10 microM,induced more than 20% of differentiated cells to become cardiomyocytes and increased total cell numbers,so that the overall cardiomyocyte yield was approximately 2.5-fold higher than controls. Gene expression indicated that early mesoderm formation was favored in the presence of SB203580. Accordingly,transient addition of the inhibitor at the onset of differentiation only was sufficient to determine the hESC fate. Patch clamp electrophysiology showed that the distribution of cardiomyocyte phenotypes in the population was unchanged by the compound. Interestingly,cardiomyogenesis was strongly inhibited at SB203580 concentrations textgreater or =15 microM. Thus,modulation of the p38MAP kinase pathway,in combination with factors released by END2 cells,plays an essential role in early lineage determination in hESC and the efficiency of cardiomyogenesis. Our findings contribute to transforming human cardiomyocyte generation from hESC into a robust and scalable process.
View Publication
Nocodazole treatment decreases expression of pluripotency markers nanog and Oct4 in human embryonic stem cells
Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC) it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells,which also expressed Oct4,SSEA-3 and SSEA-4. We also found another population expressing SSEA-4,but without Nanog,Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog,Oct4,SSEA-3,SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block,the cell cycle of hESC normalised,but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition,the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle,which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cox JL et al. (AUG 2011)
Journal of Cell Science 124 Pt 15 2654--65
Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells.
Self-renewal is a complex biological process necessary for maintaining the pluripotency of embryonic stem cells (ESCs). Recent studies have used global proteomic techniques to identify proteins that associate with the master regulators Oct4,Nanog and Sox2 in ESCs or in ESCs during the early stages of differentiation. Through an unbiased proteomic screen,Banf1 was identified as a Sox2-associated protein. Banf1 has been shown to be essential for worm and fly development but,until now,its role in mammalian development and ESCs has not been explored. In this study,we examined the effect of knocking down Banf1 on ESCs. We demonstrate that the knockdown of Banf1 promotes the differentiation of mouse ESCs and decreases the survival of both mouse and human ESCs. For mouse ESCs,we demonstrate that knocking down Banf1 promotes their differentiation into cells that exhibit markers primarily associated with mesoderm and trophectoderm. Interestingly,knockdown of Banf1 disrupts the survival of human ESCs without significantly reducing the expression levels of the master regulators Sox2,Oct4 and Nanog or inducing the expression of markers of differentiation. Furthermore,we determined that the knockdown of Banf1 alters the cell cycle distribution of both human and mouse ESCs by causing an uncharacteristic increase in the proportion of cells in the G2-M phase of the cell cycle.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tan Y et al. (JAN 2012)
Journal of biomechanics 45 1 123--8
Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers.
Human embryonic stem cells (hESC) and hESC-derived cardiomyocytes (hESC-CM) hold great promise for the treatment of cardiovascular diseases. However the mechanobiological properties of hESC and hESC-CM remains elusive. In this paper,we examined the dynamic and static micromechanical properties of hESC and hESC-CM,by manipulating via optical tweezers at the single-cell level. Theoretical approaches were developed to model the dynamic and static mechanical responses of cells during optical stretching. Our experiments showed that the mechanical stiffness of differentiated hESC-CM increased after cardiac differentiation. Such stiffening could associate with increasingly organized myofibrillar assembly that underlines the functional characteristics of hESC-CM. In summary,our findings lay the ground work for using hESC-CMs as models to study mechanical and contractile defects in heart diseases.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Moschidou D et al. (OCT 2012)
Molecular therapy : the journal of the American Society of Gene Therapy 20 10 1953--67
Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach.
Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However,due to risks of random integration of the reprogramming transgenes into the host genome,the low efficiency of the process,and the potential risk of virally induced tumorigenicity,alternative methods have been developed to generate pluripotent cells using nonintegrating systems,albeit with limited success. Here,we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors,by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion,they maintain genetic stability,protein level expression of key pluripotency factors,high cell-division kinetics,telomerase activity,repression of X-inactivation,and capacity to differentiate into lineages of the three germ layers,such as definitive endoderm,hepatocytes,bone,fat,cartilage,neurons,and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies,pharmaceutical screening,and disease modeling.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Deng Y et al. (NOV 2013)
Acta Biomaterialia 9 11 8840--8850
Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free,chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film,using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology,proliferation and expressed high levels of markers of pluripotency,similar to the cells cultured on Matrigel???. Moreover,the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined,xeno-free and safe substrate,which supports long-term proliferation and self-renewal of hiPSC,will not only help to accelerate the translational perspectives of hiPSC,but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology. ?? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
S. D. Maldonado et al. (aug 2022)
Journal of immunology (Baltimore,Md. : 1950) 209 4 675--683
Human Plasmacytoid Dendritic Cells Express C-Type Lectin Receptors and Attach and Respond to Aspergillus fumigatus.
Plasmacytoid dendritic cells (pDCs) have been implicated as having a role in antifungal immunity,but mechanisms of their interaction with fungi and the resulting cellular responses are not well understood. In this study,we identify the direct and indirect biological response of human pDCs to the fungal pathogen Aspergillus fumigatus and characterize the expression and regulation of antifungal receptors on the pDC surface. Results indicate pDCs do not phagocytose Aspergillus conidia,but instead bind hyphal surfaces and undergo activation and maturation via the upregulation of costimulatory and maturation markers. Measuring the expression of C-type lectin receptors dectin-1,dectin-2,dectin-3,and mannose receptor on human pDCs revealed intermediate expression of each receptor compared with monocytes. The specific dectin-1 agonist curdlan induced pDC activation and maturation in a cell-intrinsic and cell-extrinsic manner. The indirect activation of pDCs by curdlan was much stronger than direct stimulation and was mediated through cytokine production by other PBMCs. Overall,our data indicate pDCs express various C-type lectin receptors,recognize and respond to Aspergillus hyphal Ag,and serve as immune enhancers or modulators in the overarching fungal immune response.
View Publication
Hwang GH et al. (DEC 2017)
Journal of cellular physiology 232 12 3384--3395
Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system.
In order to realize the practical use of human pluripotent stem cell (hPSC)-derived cardiomyocytes for the purpose of clinical use or cardiovascular research,the generation of large numbers of highly purified cardiomyocytes should be achieved. Here,we show an efficient method for cardiac differentiation of human induced pluripotent stem cells (hiPSCs) in chemically defined conditions and purification of hiPSC-derived cardiomyocytes using a reporter system. Regulation of the Wnt/β-catenin signaling pathway is implicated in the induction of the cardiac differentiation of hPSCs. We increased cardiac differentiation efficiency of hiPSCs in chemically defined conditions through combined treatment with XAV939,a tankyrase inhibitor and IWP2,a porcupine inhibitor and optimized concentrations. Although cardiac differentiation efficiency was high (>80%),it was difficult to suppress differentiation into non-cardiac cells,Therefore,we applied a lentiviral reporter system,wherein green fluorescence protein (GFP) and Zeocin-resistant gene are driven by promoter activation of a gene (TNNT2) encoding cardiac troponin T (cTnT),a cardiac-specific protein,to exclude non-cardiomyocytes from differentiated cell populations. We transduced this reporter construct into differentiated cells using a lentiviral vector and then obtained highly purified hiPSC-derived cardiomyocytes by treatment with the lowest effective dose of Zeocin. We significantly increased transgenic efficiency through manipulation of the cells in which the differentiated cells were simultaneously infected with virus and re-plated after single-cell dissociation. Purified cells specifically expressed GFP,cTnT,displayed typical properties of cardiomyocytes. This study provides an efficient strategy for obtaining large quantities of highly purified hPSC-derived cardiomyocytes for application in regenerative medicine and biomedical research.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
K. Trakarnsanga et al. ( 2017)
Nature communications 8 14750
An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells.
With increasing worldwide demand for safe blood,there is much interest in generating red blood cells in vitro as an alternative clinical product. However,available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply,and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach,immortalizing early adult erythroblasts generating a stable line,which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature,functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level,and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
M. Peter et al. (May 2024)
iScience 27 6
Limitations of fluorescent timer protein maturation kinetics to isolate transcriptionally synchronized human neural progenitor cells
Differentiation of human pluripotent stem cells (hPSCs) into subtype-specific neurons holds substantial potential for disease modeling in vitro . For successful differentiation,a detailed understanding of the transcriptional networks regulating cell fate decisions is critical. The heterochronic nature of neurodevelopment,during which distinct cells in the brain and during in vitro differentiation acquire their fates in an unsynchronized manner,hinders pooled transcriptional comparisons. One approach is to “translate” chronologic time into linear developmental and maturational time. Simple binary promotor-driven fluorescent proteins (FPs) to pool similar cells are unable to achieve this goal,due to asynchronous promotor onset in individual cells. We tested five fluorescent timer (FT) molecules expressed from the endogenous paired box 6 (PAX6) promoter in 293T and human hPSCs. Each of these FT systems faithfully reported chronologic time in 293T cells,but none of the FT constructs followed the same fluorescence kinetics in human neural progenitor cells. Subject areas: Natural sciences,Biological sciences,Biochemistry,Molecular biology,Neuroscience,Cellular neuroscience,Cell biology
View Publication