Huangfu D et al. ( 2008)
Nat Biotechnol 26 11 1269--1275
Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2
Ectopic expression of defined sets of genetic factors can reprogram somatic cells to induced pluripotent stem (iPS) cells that closely resemble embryonic stem (ES) cells. The low efficiency with which iPS cells are derived hinders studies on the molecular mechanism of reprogramming,and integration of viral transgenes,in particular the oncogenes c-Myc and Klf4,may handicap this method for human therapeutic applications. Here we report that valproic acid (VPA),a histone deacetylase inhibitor,enables reprogramming of primary human fibroblasts with only two factors,Oct4 and Sox2,without the need for the oncogenes c-Myc or Klf4. The two factor-induced human iPS cells resemble human ES cells in pluripotency,global gene expression profiles and epigenetic states. These results support the possibility of reprogramming through purely chemical means,which would make therapeutic use of reprogrammed cells safer and more practical.
View Publication
产品类型:
产品号#:
72292
产品名:
Valproic Acid (Sodium Salt)
Poulin LF et al. (JUN 2010)
The Journal of experimental medicine 207 6 1261--71
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells.
In mouse,a subset of dendritic cells (DCs) known as CD8alpha+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However,translation into clinical protocols has been hampered by the failure to identify CD8alpha+ DCs in humans. Here,we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8alpha+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8alpha+ DCs,human DNGR-1+ BDCA3hi DCs express Necl2,CD207,BATF3,IRF8,and TLR3,but not CD11b,IRF4,TLR7,or (unlike CD8alpha+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8,but not of TLR7,and produce interleukin (IL)-12 when given innate and T cell-derived signals. Notably,DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Freyer N et al. ( 2016)
BioResearch open access 5 1 235--48
Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine,pharmacological drug screening,and toxicity testing. However,full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study,we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A,Wnt3a,and sodium butyrate to the culture medium. For further maturation,hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP),a marker for DE,was significantly (p textless 0.05) higher in 2D cultures,while secretion of albumin,a typical characteristic for mature hepatocytes,was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2,CYP2B6,and CYP3A4 in both groups,although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p textless 0.05) higher in 3D bioreactors compared with 2D cultures,which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin,cytokeratin 18 (CK18),and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition,cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ouyang Q et al. (NOV 2016)
Stem cell research 17 3 637--639
Human embryonic stem cells derived from abnormal blastocyst donated by polycystic kidney syndrome patient.
Human embryonic stem cell (hESC) line chHES-468 was derived from abnormal blastocyst donated by polycystic kidney syndrome (PKD) patient after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-468 cell line carried a heterozygous mutation,c.1052610527delAG,of PKD1. Characteristic tests proved that the chHES-468 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen Y-M et al. (MAR 2017)
Scientific reports 7 45146
Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs.
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity,and prepared them in formations of single chain,single chain with joint segment,dual chain with joint segment,and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain,which has a storage modulus of 25 kPa,supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
Scientific Reports 15
PKD1 mutation perturbs morphogenesis in tubular epithelial organoids derived from human pluripotent stem cells
Autosomal dominant polycystic kidney disease (ADPKD) is the most common renal genetic disease,with most patients carrying mutations in PKD1. The main feature is the formation of bilateral renal cysts,leading to end stage renal failure in a significant proportion of those affected. Despite recent advances made in understanding ADPKD,there are currently no effective curative therapies. The emergence of human induced pluripotent stem cell (hiPSC)-derived kidney disease models has led to renewed hope that more physiological systems will allow for the development of novel treatments. hiPSC-derived organoid models have been used to recapitulate ADPKD,however they present numerous limitations which remain to be addressed. In the present study,we report an efficient method for generating organoids containing a network of polarised and ciliated epithelial tubules. PKD1 null (PKD1?/?) organoids spontaneously develop dilated tubules,recapitulating early ADPKD cystogenesis. Furthermore,PKD1?/? tubules present primary cilia defects when dilated. Our model could therefore serve as a valuable tool to study early ADPKD cystogenesis and to develop novel therapies.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-94855-9.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Jan 2025)
Cell & Bioscience 15 e576
Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation
Epicardium,the most outer mesothelium,exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF,cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression,and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile,extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such,this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13578-024-01339-w.
View Publication
产品类型:
产品号#:
05025
产品名:
STEMdiff™心肌细胞分离试剂盒
Trevisan M et al. (JAN 2017)
International journal of molecular sciences 18 1
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka,who first generated iPSCs by retroviral transduction of four reprogramming factors,several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However,the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study,three different strategies,based on retroviral vectors,episomal vectors,and Sendai virus vectors,were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells,including the expression of alkaline phosphatase and stemness maker genes,and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion,the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Feb 2024)
Communications Biology 7
A retinoid analogue, TTNPB, promotes clonal expansion of human pluripotent stem cells by upregulating
Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor,Y-27632 can enhance hPSC survival and proliferation at high seeding density,dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result,colonies tend to contain heterogeneous mixtures of both modified and unmodified cells,making it difficult to isolate the desired clone buried within the colony. In this study,we report improved clonal expansion of hPSCs using a retinoic acid analogue,TTNPB. When combined with Y-27632,TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%),whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore,TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype,pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts,in part,by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion,TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications. A retinoic acid analogue,TTNPB,improves clonal expansion in adherent and suspension culture of hPSCs by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
D. Alvarez-Carbonell et al. (JUL 2018)
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells.
We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys,a medium highly representative of the CNS extracellular environment,containing low glucose and 1{\%} FBS,reduced,but did not prevent,HIV reactivation. We hypothesized that spontaneous HIV reactivation in culture was due to the expression of pro-inflammatory genes,such as TNF-alpha$,taking place in the absence of the natural inhibitory signals from astrocytes and neurons. Indeed,expression and secretion of TNF-alpha$ is strongly reduced in HIV-latently infected microglia compared to the subset of cells that have undergone spontaneous HIV reactivation. Whereas inhibitors of NF-kappa$B or of macrophage activation only had a short-term silencing effect,addition of dexamethasone (DEXA),a glucocorticoid receptor (GR) agonist and mediator of anti-inflammation,silenced the HIV provirus in a long-term,and shRNA-mediated knock-down of GR activated HIV. DEXA also decreased secretion of a number of cytokines,including TNF-alpha$. Chromatin immunoprecipitation analysis revealed that DEXA strongly increased GR occupancy at the HIV promoter,and reduced histone 3 acetylated levels. Moreover,TNF-alpha$ expression inhibitors in combination with DEXA induced further HIV silencing and increased the histone 3 lysine 27 tri-methylated epigenetic mark of repression at the HIV promoter region. We conclude that GR is a critical repressor of HIV transcription in microglia,and a novel potential pharmacological target to restrict HIV expression in the CNS.
View Publication
产品类型:
产品号#:
05790
05792
05793
05794
05795
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
K. Hosseini et al. (Apr 2025)
IBRO Neuroscience Reports 18 8
Transcriptomic characterization of maturing neurons from human neural stem cells across developmental time points
Neurodevelopmental studies employing animal models encounter challenges due to interspecies differences and ethical concerns. Maturing neurons of human origin,undergoing several developmental stages,present a powerful alternative. In this study,human embryonic stem cell (H9 cell line) was differentiated into neural stem cells and subsequently matured into neurons over 30 days. Ion AmpliSeq™ was used for transcriptomic characterization of human stem cell-derived neurons at multiple time points. Data analysis revealed a progressive increase of markers associated with neuronal development and astrocyte markers,indicating the establishment of a co-culture accommodating both glial and neurons. Transcriptomic and pathway enrichment analysis also revealed a more pronounced GABAergic phenotype in the neurons,signifying their specialization toward this cell type. The findings confirm the robustness of these cells across different passages and demonstrate detailed progression through stages of development. The model is intended for neurodevelopmental applications and can be adapted to investigate how genetic modifications or exposure to chemicals,pharmaceuticals,and other environmental factors influence neurons and glial maturation.
View Publication
产品类型:
产品号#:
08605
产品名:
STEMdiff™ 前脑神经元成熟试剂盒
Kriz V et al. (NOV 2006)
The Journal of biological chemistry 281 45 34484--91
The SHB adapter protein is required for normal maturation of mesoderm during in vitro differentiation of embryonic stem cells.
Definitive mesoderm arises from a bipotent mesendodermal population,and to study processes controlling its development at this stage,embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context,we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively,EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation,EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic,vascular,and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition,the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.
View Publication