CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration.
Hematopoietic progenitor cell trafficking is an important phenomenon throughout life. It is thought to occur in sequential steps,similar to what has been described for mature leukocytes. Molecular actors have been identified for each step of leukocyte migration; recently,CD99 was shown to play a part during transendothelial migration. We explored the expression and role of CD99 on human hematopoietic progenitors. We demonstrate that (1) CD34+ cells express CD99,albeit with various intensities; (2) subsets of CD34+ cells with high or low levels of CD99 expression produce different numbers of erythroid,natural killer (NK),or dendritic cells in the in vitro differentiation assays; (3) the level of CD99 expression is related to the ability to differentiate toward B cells; (4) CD34+ cells that migrate through an endothelial monolayer in response to SDF-1alpha and SCF display the highest level of CD99 expression; (5) binding of a neutralizing antibody to CD99 partially inhibits transendothelial migration of CD34+ progenitors in an in vitro assay; and (6) binding of a neutralizing antibody to CD99 reduces homing of CD34+ progenitors xenotransplanted in NOD-SCID mice. We conclude that expression of CD99 on human CD34+ progenitors has functional significance and that CD99 may be involved in transendothelial migration of progenitors.
View Publication
产品类型:
产品号#:
01700
01705
04230
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
MethoCult™H4230
Dixon JE et al. (SEP 2011)
Molecular therapy : the journal of the American Society of Gene Therapy 19 9 1695--703
Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network.
The limited ability of the heart to regenerate has prompted development of new systems to produce cardiomyocytes for therapeutics. While differentiation of human embryonic stem cells (hESCs) into cardiomyocytes has been well documented,the process remains inefficient and/or expensive,and progress would be facilitated by better understanding the early genetic events that cause cardiac specification. By maintaining a transgenic cardiac-specific MYH6-monomeric red fluorescent protein (mRFP) reporter hESC line in conditions that promote pluripotency,we tested the ability of combinations of 15 genes to induce cardiac specification. Screening identified GATA4 plus TBX5 as the minimum requirement to activate the cardiac gene regulatory network and produce mRFP(+) cells,while a combination of GATA4,TBX5,NKX2.5,and BAF60c (GTNB) was necessary to generate beating cardiomyocytes positive for cTnI and α-actinin. Including the chemotherapeutic agent,Ara-C,from day 10 of induced differentiation enriched for cTnI/α-actinin double positive cells to 45%. Transient expression of GTNB for 5-7 days was necessary to activate the cardiogenesis through progenitor intermediates in a manner consistent with normal heart development. This system provides a route to test the effect of different factors on human cardiac differentiation and will be useful in understanding the network failures that underlie disease phenotypes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Binda E et al. (DEC 2012)
Cancer cell 22 6 765--80
The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas.
In human glioblastomas (hGBMs),tumor-propagating cells with stem-like characteristics (TPCs) represent a key therapeutic target. We found that the EphA2 receptor tyrosine kinase is overexpressed in hGBM TPCs. Cytofluorimetric sorting into EphA2(High) and EphA2(Low) populations demonstrated that EphA2 expression correlates with the size and tumor-propagating ability of the TPC pool in hGBMs. Both ephrinA1-Fc,which caused EphA2 downregulation in TPCs,and siRNA-mediated knockdown of EPHA2 expression suppressed TPCs self-renewal ex vivo and intracranial tumorigenicity,pointing to EphA2 downregulation as a causal event in the loss of TPCs tumorigenicity. Infusion of ephrinA1-Fc into intracranial xenografts elicited strong tumor-suppressing effects,suggestive of therapeutic applications.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Lu J et al. (APR 2017)
Journal of biomedical materials research. Part A 105 4 1094--1104
Interactions of human embryonic stem cell-derived cardiovascular progenitor cells with immobilized extracellular matrix proteins.
Human embryonic stem cell-derived cardiovascular progenitor cells (hESC-CVPCs) hold great promise for cell-based therapies of heart diseases. However,little is known about their niche microenvironment and in particular the required extracellular matrix (ECM) components. Here we screened combinations of surface-immobilized ECM proteins to identify substrates that support the attachment and survival of hESC-CVPCs. Covalent immobilization of ECM proteins laminin (Lm),fibronectin (Fn),collagen I (CI),collagen III (CIII),and collagen IV (CIV) in multiple combinations and concentrations was achieved by reductive amination on transparent acetaldehyde plasma polymer (AAPP) interlayer coatings. We identified that CI,CIII,CIV,and Fn and their combinations were important for hESC-CVPC attachment and survival,while Lm was dispensable. Moreover,for coatings displaying single ECM proteins,CI and CIII performed better than CIV and Fn,while coatings displaying the combined ECM proteins CIII + CIV and Fn + CIII + CIV at 100 µg/mL were comparable to Matrigel in regard to supporting hESC-CVPC attachment and viability. Our results identify ECM proteins required for hESC-CVPCs and demonstrate that coatings displaying multiple immobilized ECM proteins offer a suitable microenvironment for the attachment and survival of hESC-CVPCs. This knowledge contributes to the development of approaches for maintaining hESC-CVPCs and therefore to advances in cardiovascular regeneration. textcopyright 2017 Wiley Periodicals,Inc. J Biomed Mater Res Part A: 105A: 1094-1104,2017.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Marzaioli V et al. ( 2017)
Blood 130 15 1734--1745
NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells.
Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system,acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study,we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox,and not on gp91phox/NOX2,as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover,we revealed that NOX5 expression was strongly increased during Mo-DC differentiation,but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC,and at a lower level in plasmacytoid DC. Interestingly,NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation,and thus could be critical for immunity and inflammation.
View Publication
产品类型:
产品号#:
19061
19061RF
19062
19062RF
19359
19359RF
产品名:
EasySep™人髓样DC富集试剂盒
RoboSep™ 人髓样DC富集试剂盒
EasySep™人浆细胞样DC富集试剂盒
RoboSep™ 人浆细胞样DC富集试剂盒含滤芯吸头
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
Rahkonen N et al. (SEP 2016)
Stem cell research 17 3 498--503
Mature Let-7 miRNAs fine tune expression of LIN28B in pluripotent human embryonic stem cells.
MicroRNAs (miRNA) are central regulators of diverse biological processes and are important in the regulation of stem cell self-renewal. One of the widely studied miRNA-protein regulators is the Lin28-Let-7 pair. In this study,we demonstrate that contrary to the well-established models of mouse ES cells (mESC) and transformed human cancer cells,the pluripotent state of human ES cells (hESC) involves expression of mature Let-7 family miRNAs with concurrent expression of all LIN28 proteins. We show that mature Let-7 miRNAs are regulated during hESC differentiation and have opposite expression profile with LIN28B. Moreover,mature Let-7 miRNAs fine tune the expression levels of LIN28B protein in pluripotent hESCs,whereas silencing of LIN28 proteins have no effect on mature Let-7 levels. These results bring novel information to the highly complex network of human pluripotency and suggest that maintenance of hESC pluripotency differs greatly from the mESCs in regard to LIN28-Let-7 regulation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hunt NC et al. (FEB 2017)
Acta biomaterialia 49 329--343
3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is,however,limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel),0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker,MATH5. Furthermore,0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1,CRX,RCVRN,AP2α or VSX2) as determined by qRT-PCR,or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE,but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation,transport and transplantation of neural retina and RPE,and may also enhance formation of other pigmented,neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However,derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs,whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented,neural or epithelial tissue.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
D. Duluc et al. ( 2014)
The Journal of Immunology 192 5776-88
Induction and activation of human Th17 by targeting antigens to dendritic cells via dectin-1
Recent compelling evidence indicates that Th17 confer host immunity against a variety of microbes,including extracellular and intracellular pathogens. Therefore,understanding mechanisms for the induction and activation of Ag-specific Th17 is important for the rational design of vaccines against pathogens. To study this,we employed an in vitro system in which influenza hemagglutinin (HA) 1 was delivered to dendritic cells (DCs) via Dectin-1 using anti-human Dectin-1 (hDectin-1)-HA1 recombinant fusion proteins. We found that healthy individuals maintained broad ranges of HA1-specific memory Th17 that were efficiently activated by DCs targeted with anti-hDectin-1-HA1. Nonetheless,these DCs were not able to induce a significant level of HA1-specific Th17 responses even in the presence of the Th17-promoting cytokines IL-1? and IL-6. We further found that the induction of surface IL-1R1 expression by signals via TCRs and common ?-chain receptors was essential for naive CD4(+) T cell differentiation into HA1-specific Th17. This process was dependent on MyD88,but not IL-1R-associated kinase 1/4. Thus,interruptions in STAT3 or MyD88 signaling led to substantially diminished HA1-specific Th17 induction. Taken together,the de novo generation of pathogen-specific human Th17 requires complex,but complementary,actions of multiple signals. Data from this study will help us design a new and effective vaccine strategy that can promote Th17-mediated immunity against microbial pathogens.
View Publication
产品类型:
产品号#:
19052
产品名:
EasySep™人CD4+ T细胞富集试剂盒
Greish K et al. ( )
Anticancer research 25 6B 4245--8
Protective effect of melatonin on human peripheral blood hematopoeitic stem cells against doxorubicin cytotoxicity.
BACKGROUND: The dose-limiting toxicity of doxorubicin on hematopoietic stem cells reduces the maximum benefit from this powerful drug. Melatonin may play a role in reducing this toxicity. MATERIALS AND METHODS: Melatonin at 10 microM was used while challenging human peripheral blood stem cells (PBSC) with doxorubicin (0.6 microM and 1 microM),and colony formation was used to evaluate the protective effect of melatonin. RESULTS: Melatonin was protective for the myeloid and erythroid series when given during or 1 hour after,but not before,doxorubicin,as measured by colony assay. This protection was independent from its antioxidant function as measured by 2',7'-dichlodihydro-fluorescein diacetate and was selective for PBSC when compared to the MCF-7 cancer cell line. CONCLUSION: The results suggest the importance of the time sequence for melatonin administration to exert its protective effect in relation to doxorubicin treatment,as well as its protective effect on both erythroid and myeloid elements independent from its antioxidant function.
View Publication
产品类型:
产品号#:
84434
84444
产品名:
Chen AY et al. (DEC 2010)
Journal of virology 84 23 12385--96
Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells.
Parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells. Although previous studies have led to the theory that the basis of this tropism is receptor expression,this has been questioned by more recent observation. In the study reported here,we have investigated the basis of this tropism,and a potential role of erythropoietin (Epo) signaling,in erythroid progenitor cells (EPCs) expanded ex vivo from CD34(+) hematopoietic cells in the absence of Epo (CD36(+)/Epo(-) EPCs). We show,first,that CD36(+)/Epo(-) EPCs do not support B19V replication,in spite of B19V entry,but Epo exposure either prior to infection or after virus entry enabled active B19V replication. Second,when Janus kinase 2 (Jak2) phosphorylation was inhibited using the inhibitor AG490,phosphorylation of the Epo receptor (EpoR) was also inhibited,and B19V replication in ex vivo-expanded erythroid progenitor cells exposed to Epo (CD36(+)/Epo(+) EPCs) was abolished. Third,expression of constitutively active EpoR in CD36(+)/Epo(-) EPCs led to efficient B19V replication. Finally,B19V replication in CD36(+)/Epo(+) EPCs required Epo,and the replication response was dose dependent. Our findings demonstrate that EpoR signaling is absolutely required for B19V replication in ex vivo-expanded erythroid progenitor cells after initial virus entry and at least partly accounts for the remarkable tropism of B19V infection for human erythroid progenitors.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Bogomazova AN et al. (JUN 2011)
Aging 3 6 584--596
Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2.
Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay,we analyzed chromosomal aberrations in pluripotent stem cells and somatic cells. The chromatid exchange aberration rates in hESCs increased manifold 2 hours after irradiation as compared with their differentiated derivatives,but the frequency of radiation-induced chromatid breaks was similar. The rate of radiation-induced chromatid exchanges in hESCs and differentiated cells exhibited a quadratic dose response,revealing two-hit mechanism of exchange formation suggesting that a non-homologous end joining (NHEJ) repair may contribute to their formation. Inhibition of DNA-PK,a key NHEJ component,by NU7026 resulted in a significant decrease in radiation-induced chromatid exchanges in hESCs but not in somatic cells. In contrast,NU7026 treatment increased the frequency of radiation-induced breaks to a similar extent in pluripotent and somatic cells. Thus,DNA-PK dependent NHEJ efficiently participates in the elimination of radiation-induced chromatid breaks during the late G2 in both cell types and DNA-PK activity leads to a high level of misrejoining specifically in pluripotent cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Azarin SM et al. (MAR 2012)
Biomaterials 33 7 2041--2049
Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array.
Intercellular interactions in the cell microenvironment play a critical role in determining cell fate,but the effects of these interactions on pathways governing human embryonic stem cell (hESC) behavior have not been fully elucidated. We and others have previously reported that 3-D culture of hESCs affects cell fates,including self-renewal and differentiation to a variety of lineages. Here we have used a microwell culture system that produces 3-D colonies of uniform size and shape to provide insight into the effect of modulating cell-cell contact on canonical Wnt/??-catenin signaling in hESCs. Canonical Wnt signaling has been implicated in both self-renewal and differentiation of hESCs,and competition for ??-catenin between the Wnt pathway and cadherin-mediated cell-cell interactions impacts various developmental processes,including the epithelial-mesenchymal transition. Our results showed that hESCs cultured in 3-D microwells exhibited higher E-cadherin expression than cells on 2-D substrates. The increase in E-cadherin expression in microwells was accompanied by a downregulation of Wnt signaling,as evidenced by the lack of nuclear ??-catenin and downregulation of Wnt target genes. Despite this reduction in Wnt signaling in microwell cultures,embryoid bodies (EBs) formed from hESCs cultured in microwells exhibited higher levels of Wnt signaling than EBs from hESCs cultured on 2-D substrates. Furthermore,the Wnt-positive cells within EBs showed upregulation of genes associated with cardiogenesis. These results demonstrate that modulation of intercellular interactions impacts Wnt/??-catenin signaling in hESCs. ?? 2011 Elsevier Ltd.
View Publication