HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing.
HIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor,including ULBP-1,-2,and -3,but not MICA or MICB,in infected cells both in vitro and in vivo. However,the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G(2) cell-cycle arrest,conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4(+) T lymphocytes by a process that is Vpr dependent. Importantly,Vpr enhanced the susceptibility of HIV-1-infected cells to NK cell-mediated killing. Strikingly,Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell-mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells,suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall,these results indicate that Vpr is a key determinant responsible for HIV-1-induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1-induced CD4(+) T-lymphocyte depletion but may also take part in HIV-1-induced NK-cell dysfunction.
View Publication
Nolz JC et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 2 1104--12
TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation.
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation,the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end,we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux,and blocked activation of two regulatory elements within the IL-2 promoter,NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly,we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact,NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation,and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall,these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and,thus,activation of the CD28RE/AP.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
De Filippis L et al. ( 2016)
Molecular brain 9 1 51
Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells.
BACKGROUND Alcohol abuse produces an enormous impact on health,society,and the economy. Currently,there are very limited therapies available,largely due to the poor understanding of mechanisms underlying alcohol use disorders (AUDs) in humans. Oxidative damage of mitochondria and cellular proteins aggravates the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. RESULTS Here we show that ethanol exposure causes neuroinflammation in both human induced pluripotent stem (iPS) cells and human neural progenitor cells (NPCs). Ethanol exposure for 24 hours or 7 days does not affect the proliferation of iPS cells and NPCs,but primes an innate immune-like response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. This leads to an increase of microtubule-associated protein 1A/1B-light chain 3(+) (LC3B(+)) autophagic puncta and impairment of the mitochondrial and lysosomal distribution. In addition,a decrease of mature neurons derived from differentiating NPCs is evident in ethanol pre-exposed compared to control NPCs. Moreover,a second insult of a pro-inflammatory factor in addition to ethanol preexposure enhances innate cellular inflammation in human iPS cells. CONCLUSIONS This study provides strong evidence that neuronal inflammation contributes to the pathophysiology of AUDs through the activation of the inflammasome pathway in human cellular models.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tucker BA et al. (DEC 2015)
Translational Research 166 6 740--749.e1
Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial
Retinal pigment epithelium-specific 65 kDa (RPE65)-associated Leber congenital amaurosis is an autosomal recessive disease that results in reduced visual acuity and night blindness beginning at birth. It is one of the few retinal degenerative disorders for which promising clinical gene transfer trials are currently underway. However,the ability to enroll patients in a gene augmentation trial is dependent on the identification of 2 bona fide disease-causing mutations,and there are some patients with the phenotype of RPE65-associated disease who might benefit from gene transfer but are ineligible because 2 disease-causing genetic variations have not yet been identified. Some such patients have novel mutations in RPE65 for which pathogenicity is difficult to confirm. The goal of this study was to determine if an intronic mutation identified in a 2-year-old patient with presumed RPE65-associated disease was truly pathogenic and grounds for inclusion in a clinical gene augmentation trial. Sequencing of the RPE65 gene revealed 2 mutations: (1) a previously identified disease-causing exonic leucine-to-proline mutation (L408P) and (2) a novel single point mutation in intron 3 (IVS3-11) resulting in an AtextgreaterG change. RT-PCR analysis using RNA extracted from control human donor eye-derived primary RPE,control iPSC-RPE cells,and proband iPSC-RPE cells revealed that the identified IVS3-11 variation caused a splicing defect that resulted in a frameshift and insertion of a premature stop codon. In this study,we demonstrate how patient-specific iPSCs can be used to confirm pathogenicity of unknown mutations,which can enable positive clinical outcomes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lin S et al. (JAN 2010)
Journal of visualized experiments : JoVE 39 11330
Video bioinformatics analysis of human embryonic stem cell colony growth.
Because video data are complex and are comprised of many images,mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article,we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments,hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies,recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth,three recipes were created. The first segmented the image into the colony and background,the second enhanced the image to define colonies throughout the video sequence accurately,and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes,the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared,results were virtually identical,indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition,other video bioinformatics recipes can be developed in the future for other cell processes such as migration,apoptosis,and cell adhesion.
View Publication
Sokolov M et al. (JUN 2015)
International journal of molecular sciences 16 7 14737--48
Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.
The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood,generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures,especially genotoxic stresses. However,the risks stemming from exposure to LDIR,particularly within the clinical diagnostic relevant dose range,have not been directly evaluated in human embryonic stem cells (hESCs). Here,we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and,as a reference,high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-,time-,and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs,suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Ponchio L et al. (NOV 1995)
Blood 86 9 3314--21
Quantitation of the quiescent fraction of long-term culture-initiating cells in normal human blood and marrow and the kinetics of their growth factor-stimulated entry into S-phase in vitro.
A method for quantitating the proportion of cycling long-term culture-initiating cells (LTC-IC) in heterogeneous populations of human hematopoietic cells is described. This procedure involves incubating the cells of interest for 16 to 24 hours in a serum-free medium containing 100 ng/mL Steel factor (SF),20 ng/mL interleukin-3 (IL-3),and 20 ng/mL granulocyte-colony-stimulating factor (G-CSF),with or without 20 microCi/mL of high specific activity 3H-thymidine (3H-Tdr) before plating the recovered cells in standard LTC-IC assays. The details of this procedure are based in part on the finding that the number of LTC-IC (regardless of their cycling status) remains constant for at least 24 hours under these culture conditions,as long as 3H-Tdr is not present. In addition,we have determined that a 16-hour period of exposure to the 3H-Tdr is sufficient to maximize the discrimination of cycling LTC-IC but not long enough to allow a detectable redistribution of LTC-IC between noncycling and cycling compartments. Finally,any isotope reutilization that may occur is not sufficient to affect the LTC-IC 3H-Tdr suicide values measured. Application of this methodology to normally circulating LTC-IC showed these to be a primarily quiescent population. However,within 72 hours of incubation in a serum-free medium containing SF,IL-3,and G-CSF,most had entered S-phase,although there was no net change in their numbers. This suggests that,under certain conditions in vitro,self-renewal divisions of LTC-IC can occur and,at least initially,balance any losses of these cells due to their differentiation or death. In contrast,many of the LTC-IC in freshly aspirated samples of normal marrow were found to be proliferating,although those that were initially quiescent could also be recruited into S-phase within 72 hours in vitro when incubated under the same conditions used to stimulate circulating LTC-IC. This modified 3H-Tdr suicide procedure should facilitate further investigation of the mechanisms regulating the turnover of the most primitive compartments of human hematopoietic cells and how these may be altered in disease states or exploited for a variety of therapeutic applications.
View Publication
Waltenberger J et al. ( 1999)
Circulation research 85 1 12--22
A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling.
PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed,and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs,as determined in the modified Boyden chamber,as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly,in addition to inhibition of Src kinase,PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells,including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR,PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases,the activities of the epidermal growth factor receptor,fibroblast growth factor receptor-1,and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872,whereas PDGF alpha-receptor was susceptible,albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events,creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity,such as vascular remodeling and restenosis.
View Publication