Human iPSC and CRISPR targeted gene knock-in strategy for studying the somatic TIE2
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases,including those with genetic origins. Currently,primary ECs are the main source for disease modelling in this field. However,they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level,we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor,known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level,which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly,the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability,while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary,we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10456-024-09925-9.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
M. Dubau et al. (May 2025)
Journal of Tissue Engineering 16 10
Development of an iPSC-derived immunocompetent skin model for identification of skin sensitizing substances
The development of immunocompetent skin models marks a significant advancement in in vitro methods for detecting skin sensitizers while adhering to the 3R principles,which aim to reduce,refine,and replace animal testing. This study introduces for the first time an advanced immunocompetent skin model constructed entirely from induced pluripotent stem cell (iPSC)-derived cell types,including fibroblasts (iPSC-FB),keratinocytes (iPSC-KC),and fully integrated dendritic cells (iPSC-DC). To evaluate the skin model’s capacity,the model was treated topically with a range of well-characterized skin sensitizers varying in potency. The results indicate that the iPSC-derived immunocompetent skin model successfully replicates the physiological responses of human skin,offering a robust and reliable alternative to animal models for skin sensitization testing,allowing detection of extreme and even weak sensitizers. By addressing critical aspects of immune activation and cytokine signaling,this model provides an ethical,comprehensive tool for regulatory toxicology and dermatological research.
View Publication
产品类型:
产品号#:
05320
100-0956
10986
10987
10988
产品名:
STEMdiff™ 单核细胞试剂盒
ImmunoCult™ XF培养基
ImmunoCult™-ACF树突状细胞培养基
ImmunoCult™-ACF树突状细胞培养基
ImmunoCult™-ACF树突状细胞分化添加物
C. Vragniau et al. (sep 2019)
Science Advances 5 9 eaaw2853
Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display
Self-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer,an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo–electron microscopy at near-atomic resolution and implemented novel,cost-effective,high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease,exemplifying the potential of our approach.
View Publication
Microengineered patient-derived endometrium-on-a-chip for the evaluation of endometrial receptivity and personalised translational medicine
Endometrial receptivity is a critical determinant of embryo implantation and early pregnancy success; however,current methods for assessing endometrial receptivity remain poorly validated and insufficiently reliable for clinical application. Here,we establish a patient-derived vascularised endometrium-on-a-chip (EoC),successfully replicating the dynamic microenvironment and both temporal and spatial architecture of native endometrial tissue. Using our EoC,we develop a clinically relevant endometrial receptivity scoring system,ERS2,which integrates molecular profiling of established receptivity markers with quantitative analyses of angiogenesis. The ERS2 enables personalised assessment of endometrial health and implantation potential,addressing inter-patient variability often overlooked by conventional techniques. By leveraging our EoC to therapeutic monitoring,we observe progressive restoration of the endometrial microenvironment following platelet-rich-plasma treatments,highlighting the translational utility of our model. This study represents the innovative application of a patient-derived EoC and scoring system to assess receptivity,offering personalised infertility management and advancing targeted therapies in reproductive medicine. Accurate assessment of endometrial receptivity remains a challenge in infertility care. Here,authors present a patient-derived vascularised endometrium-on-a-chip and a scoring system for receptivity evaluation.
View Publication
Salah M et al. (DEC 2015)
Molecular carcinogenesis
An in vitro system to characterize prostate cancer progression identified signaling required for self-renewal.
Mutations in RB and PTEN are linked to castration resistance and poor prognosis in prostate cancer. Identification of genes that are regulated by these tumor suppressors in a context that recapitulates cancer progression may be beneficial for discovering novel therapeutic targets. Although various genetically engineered mice thus far provided tumor models with various pathological stages,they are not ideal for detecting dynamic changes in gene transcription. Additionally,it is difficult to achieve an effect specific to tumor progression via gain of functions of these genes. In this study,we developed an in vitro model to help identify RB- and PTEN-loss signatures during the malignant progression of prostate cancers. Trp53(-/-) ; Rb(f/f),Trp53(-/-) ; Pten(f/f),and Trp53(-/-) ; Rb(f/f) ; Pten(f/f) prostate epithelial cells were infected with AD-LacZ or AD-Cre. We found that deletion of Rb,Pten or both stimulated prostasphere formation and tumor development in immune-compromised mice. The GO analysis of genes affected by the deletion of Rb or Pten in Trp53(-/-) prostate epithelial cells identified a number of genes encoding cytokines,chemokines and extracellular matrix remodeling factors,but only few genes related to cell cycle progression. Two genes (Il-6 and Lox) were further analyzed. Blockade of Il-6 signaling and depletion of Lox significantly attenuated prostasphere formation in 3D culture,and in the case of IL-6,strongly suppressed tumor growth in vivo. These findings suggest that our in vitro model may be instrumental in identifying novel therapeutic targets of prostate cancer progression,and further underscore IL-6 and LOX as promising therapeutic targets. textcopyright 2015 Wiley Periodicals,Inc.
View Publication
产品类型:
产品号#:
05640
产品名:
Iori AP et al. (JUN 2004)
Bone marrow transplantation 33 11 1097--105
Pre-transplant prognostic factors for patients with high-risk leukemia undergoing an unrelated cord blood transplantation.
From July 1995 to December 2001,42 patients with leukemia aged 1-42 years underwent cord blood transplant (CBT) from unrelated,textless or = 2 antigen HLA mismatched donors. In all,26 patients were in textless or = 2nd complete remission and 16 in more advanced phase. Conditioning regimens,graft-versus-host disease (GVHD) prophylaxis and supportive policy were uniform for all patients. The cumulative incidence of engraftment was 90% (95% CI: 0.78-0.91). The cumulative incidence of III-IV grade acute- and chronic-GVHD was 9% (95% CI: 0.04-0.24) and 35% (95% CI: 0.21-0.60),respectively. The 4-year cumulative incidence of transplant-related mortality (TRM) and relapse was 28% (95% CI: 0.17-0.47) and 25% (95% CI: 0.14-0.45),respectively. The 4-year overall survival (OS),leukemia-free survival (LFS) and event-free survival (EFS) were 45% (95% CI: 0.27-0.63),47% (95% CI: 0.30-0.64) and 46% (95% CI: 0.30-0.62),respectively. In multivariate analysis,the most important factor affecting outcomes was the CFU-GM dose,associated with CMV serology (P=0.003 and 0.04,respectively) in influencing OS and with patient sex (P=0.008 and 0.03,respectively) in influencing LFS. Finally,CFU-GM dose was the only factor that affected EFS significantly (P=0.02). In conclusion,the infused cell dose expressed as in vitro progenitor cell growth is highly predictive of outcomes after an unrelated CBT and should be considered the main parameter in selecting cord blood units for transplant.
View Publication
产品类型:
产品号#:
04437
04447
产品名:
MethoCult™表达
MethoCult™表达
Li J et al. (MAR 2005)
Clinical Cancer Research 11 6 2195--2204
Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases
PURPOSE: The PRL-3 mRNA is consistently elevated in metastatic samples derived from colorectal cancers. We sought to generate a specific PRL-3 monoclonal antibody (mAb) that might serve as a potential diagnostic marker for colorectal cancer metastasis. EXPERIMENTAL DESIGN: PRL-3 is one of three members (PRL-1,PRL-2,and PRL-3) in a unique protein-tyrosine phosphatase family. Because the three PRLs are 76% to 87% identical in their amino acid sequences,it poses a great challenge to obtain mAbs that are specific for respective phosphatase of regenerating liver (PRL) but not for the other two in the family. We screened over 1,400 hybridoma clones to generate mAbs specific to each PRL member. RESULTS: We obtained two hybridoma clones specifically against PRL-3 and another two clones specifically against PRL-1. These antibodies had been evaluated by several critical tests to show their own specificities and applications. Most importantly,the PRL-3 mAbs were assessed on 282 human colorectal tissue samples (121 normal,17 adenomas,and 144 adenocarcinomas). PRL-3 protein was detected in 11% of adenocarcinoma samples. The PRL-3- and PRL-1-specific mAbs were further examined on 204 human multiple cancer tissues. The differential expressions of PRL-3 and PRL-1 confirmed the mAbs' specificity. CONCLUSIONS: Using several approaches,we show that PRL-3- or PRL-1-specific mAbs react only to their respective antigen. The expression of PRL-3 in textgreater10% of primary colorectal cancer samples indicates that PRL-3 may prime the metastatic process. These mAbs will be useful as markers in clinical diagnosis for assessing tumor aggressiveness.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Bravard A et al. (JAN 2015)
Nucleic acids research 43 2 904--16
The prion protein is critical for DNA repair and cell survival after genotoxic stress.
The prion protein (PrP) is highly conserved and ubiquitously expressed,suggesting that it plays an important physiological function. However,despite decades of investigation,this role remains elusive. Here,by using animal and cellular models,we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1,the major mammalian endonuclease essential for base excision repair,and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp(-/-) mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus,PrP is required to maintain genomic stability in response to genotoxic stresses.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Jennifer S et al. (JANUARY 2016)
Cytotherapy 18 1 1-12
Current perspectives on the use of ancillary materials for the manufacture of cellular therapies.
Continued growth in the cell therapy industry and commercialization of cell therapies that successfully advance through clinical trials has led to increased awareness around the need for specialized and complex materials utilized in their manufacture. Ancillary materials (AMs) are components or reagents used during the manufacture of cell therapy products but are not intended to be part of the final products. Commonly,there are limitations in the availability of clinical-grade reagents used as AMs. Furthermore,AMs may affect the efficacy of the cell product and subsequent safety of the cell therapy for the patient. As such,AMs must be carefully selected and appropriately qualified during the cell therapy development process. However,the ongoing evolution of cell therapy research,limited number of clinical trials and registered cell therapy products results in the current absence of specific regulations governing the composition,compliance,and qualification of AMs often leads to confusion by suppliers and users in this field. Here we provide an overview and interpretation of the existing global framework surrounding AM use and investigate some common misunderstandings within the industry,with the aim of facilitating the appropriate selection and qualification of AMs. The key message we wish to emphasize is that in order to most effectively mitigate risk around cell therapy development and patient safety,users must work with their suppliers and regulators to qualify each AM to assess source,purity,identity,safety,and suitability in a given application.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hideshima T et al. (OCT 2016)
Proceedings of the National Academy of Sciences of the United States of America
Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma.
Multiple myeloma (MM) has proven clinically susceptible to modulation of pathways of protein homeostasis. Blockade of proteasomal degradation of polyubiquitinated misfolded proteins by the proteasome inhibitor bortezomib (BTZ) achieves responses and prolongs survival in MM,but long-term treatment with BTZ leads to drug-resistant relapse in most patients. In a proof-of-concept study,we previously demonstrated that blocking aggresomal breakdown of polyubiquitinated misfolded proteins with the histone deacetylase 6 (HDAC6) inhibitor tubacin enhances BTZ-induced cytotoxicity in MM cells in vitro. However,these foundational studies were limited by the pharmacologic liabilities of tubacin as a chemical probe with only in vitro utility. Emerging from a focused library synthesis,a potent,selective,and bioavailable HDAC6 inhibitor,WT161,was created to study the mechanism of action of HDAC6 inhibition in MM alone and in combination with BTZ. WT161 in combination with BTZ triggers significant accumulation of polyubiquitinated proteins and cell stress,followed by caspase activation and apoptosis. More importantly,this combination treatment was effective in BTZ-resistant cells and in the presence of bone marrow stromal cells,which have been shown to mediate MM cell drug resistance. The activity of WT161 was confirmed in our human MM cell xenograft mouse model and established the framework for clinical trials of the combination treatment to improve patient outcomes in MM.
View Publication