Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication
产品类型:
产品号#:
72312
72314
72512
72514
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
IDE1
IDE1
Stingl J et al. (MAY 2001)
Breast cancer research and treatment 67 2 93--109
Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted,myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM),alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18,keratin 19,EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
View Publication
产品类型:
产品号#:
01700
01705
05601
05610
01420
01421
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
EpiCult™-B 人培养基
EpiCult™-B 小鼠培养基试剂盒
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
O'Brien CM et al. (DEC 2016)
Stem cells (Dayton,Ohio)
New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterised monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs),confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs,providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition,we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs),normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency,and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
05970
产品名:
(Sep 2024)
Stem Cell Research & Therapy 15 8
Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1
BackgroundUnderstanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models,lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate,and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule.MethodsTo establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells,we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways,and construct cell lines carrying an inducible NKX3-1 expressing cassette,together with three-dimensional culture system. Unpaired t test was applied for statistical analyses.ResultsWe first successfully generate the definitive endoderm,hindgut,and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1,but fail to express NKX3-1. Therefore,we construct NKX3-1-inducible cell line by homologous recombination,which is eventually able to yield AR,FOXA1,and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally,combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations.ConclusionsThis study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line,as well as provides a stepwise differentiation protocol to generate human prostate-like organoids,which should facilitate the studies on prostate development and disease pathogenesis.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03886-y.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(May 2024)
Cell reports 43 5
Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming
SUMMARY During cell fate transitions,cells remodel their transcriptome,chromatin,and epigenome; however,it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here,we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that,following heterokaryon formation,the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG,conversely,has significant nascent RNA transcription only at 48 h after cell fusion but,strikingly,exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent. In brief Martinez-Sarmiento et al. demonstrate that,during heterokaryon reprogramming,global chromatin decondensation and loss of repressive histone modifications occur at late stages after cell fusion. Activation of OCT4 precedes global chromatin decompaction and does not require the opening of its local genomic region. Conversely,NANOG activation occurs after OCT4 activation,and the NANOG locus undergoes opening prior to its transcriptional activation. Graphical Abstract
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
Palaniyandi K et al. (JUL 2012)
Journal of cancer science & therapy 4 7 214--222
Human Breast Cancer Stem Cells Have Significantly Higher Rate of Clathrin-Independent and Caveolin-Independent Endocytosis than the Differentiated Breast Cancer Cells.
Breast Cancer Stem (BCS) cells play critical roles in self-renewal,Multi Drug Resistance (MDR),differentiation and generation of secondary tumors. Conventional chemotherapy may efficiently kill the bulk of differentiated drug sensitive breast cancer cells,but not the MDR self-renewable BCS cells,leading to enrichment of the MDR BCS cells. In order to target the MDR BCS cells,we have isolated: 1) BCS cells from either breast cancer cell lines or fresh breast cancer specimens; 2) ATP binding cassette (ABC) transporter group G number 2 (ABCG2)-specific aptamers; and 3) BCS cell-binding aptamers. Interestingly,ABCG2-specific aptamers labeled the membrane surface of the ABCG2-expressing baby hamster kidney (BHK) cells,but stained whole cells of the BCS cells derived from mammospheres,implying that BCS cells might have much higher rate of endocytosis than the ABCG2-expressing BHK cells. In addition,5D3,a monoclonal antibody that recognizes the extracellular loops of ABCG2 protein,also stained whole BCS cells. Furthermore,BCS cell-binding aptamers stained whole BCS cells,but not the differentiated breast cancer MCF-7 cells. All these results support above conclusion that BCS cells might have high rate of endocytosis. Further experiments performed with aptamers and human transferrin or lactosylceramide showed that BCS cells do have much higher endocytosis rate than the differentiated breast cancer cells. Interestingly,clathrin dependent endocytosis inhibitors,such as monodansylcadaverine or sucrose,or caveolin-dependent endocytosis inhibitors,such as methyl-$$-cyclodextrin or genistein,can inhibit the internalization of transferrin or lactosylceramide into the differentiated breast cancer cells,but cannot block the internalization of these compounds into the BCS cells,suggesting that BCS cells undergo clathrin-independent and caveolin-independent endocytosis. Taken together,our data suggest that BCS cells have high rate of endocytosis and open the possibilities for delivering therapeutic agents directly into the MDR BCS cells with aptamer-coated liposomes.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Zhao H et al. (JUN 2009)
Blood 113 23 5747--56
Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However,transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT),driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs,which can be administered to kill residual untransduced,diseased HSCs,whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells,transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin,leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Fassnacht M et al. (AUG 2005)
Clinical cancer research : an official journal of the American Association for Cancer Research 11 15 5566--71
Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy.
PURPOSE: The propensity of tumor cells to escape immune elimination could limit,if not defeat,the long-term benefits of effective immunotherapeutic protocols. Immunologic targeting of tumor stroma could significantly reduce the ability of tumors to evade immune elimination. Murine studies have shown that inducing immunity against angiogenesis-associated products engenders potent antitumor immunity without significant pathology. It is,however,not known whether T cells corresponding to stromal products are present in humans. In this study,we describe a method to screen for human stromal products that have not triggered significant tolerance and could therefore serve as candidate antigens for cancer immunotherapy. EXPERIMENTAL DESIGN: To identify candidates for human stromal antigens,we used an in vitro-screening method to determine whether dendritic cells transfected with mRNA encoding products,which are overexpressed in the tumor stroma,are capable of stimulating cytotoxic CD8(+) (CTL) responses from human peripheral blood mononuclear cells. RESULTS: CTL responses could be consistently generated against fibroblast activation protein (FAP) but not against matrix metalloproteinase-9 (MMP-9) or MMP-14. To enhance the immunogenicity of the mRNA-translated FAP product,a lysosomal targeting signal derived from lysosome-associated membrane protein-1 (LAMP-1) was fused to the COOH terminus of FAP to redirect the translated product into the class II presentation pathway. Dendritic cells transfected with mRNA encoding the FAP-LAMP fusion product stimulated enhanced CD4(+) and CD8(+) T-cell responses. CONCLUSION: This study identifies FAP,a protease preferentially expressed in tumor-associated fibroblasts,as a candidate human stromal antigen to target in the setting of cancer immunotherapy,and shows that differential expression of stromal products is not a sufficient criteria to indicate its immunogenicity in a vaccination setting.
View Publication
产品类型:
产品号#:
18053
18053RF
产品名:
Nguyen HX et al. (AUG 2014)
Journal of Comparative Neurology 522 12 2767--2783
Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) can differentiate into many cell types and are important for regenerative medicine; however,further work is needed to reliably differentiate hESC and hiPSC into neural-restricted multipotent derivatives or specialized cell types under conditions that are free from animal products. Toward this goal,we tested the transition of hESC and hiPSC lines onto xeno-free (XF) / feeder-free conditions and evaluated XF substrate preference,pluripotency,and karyotype. Critically,XF transitioned H9 hESC,Shef4 hESC,and iPS6-9 retained pluripotency (Oct-4 and NANOG),proliferation (MKI67 and PCNA),and normal karyotype. Subsequently,XF transitioned hESC and hiPSC were induced with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to generate neuralized spheres containing primitive neural precursors,which could differentiate into astrocytes and neurons,but not oligoprogenitors. Further neuralization of spheres via LIF supplementation and attachment selection on CELLstart substrate generated adherent human neural stem cells (hNSC) with normal karyotype and high proliferation potential under XF conditions. Interestingly,adherent hNSC derived from H9,Shef4,and iPS6-9 differentiated into significant numbers of O4+ oligoprogenitors (∼20-30%) with robust proliferation; however,very few GalC+ cells were observed (∼2-4%),indicative of early oligodendrocytic lineage commitment. Overall,these data demonstrate the transition of multiple hESC and hiPSC lines onto XF substrate and media conditions,and a reproducible neuralization method that generated neural derivatives with multipotent cell fate potential and normal karyotype.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang H et al. (JAN 2012)
Journal of translational medicine 10 1 167
Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells.
BACKGROUND: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer,as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence,novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. METHODS: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance,irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover,we identified and isolated CD44(+)CD24(+)ESA(+) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. RESULTS: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore,GLV-1h68 also showed preferential replication in CD44(+)CD24(+)ESA(+) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44(+)CD24(-)ESA(+) cells. CONCLUSIONS: Taken together,our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus,GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors,especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
View Publication