Jung J-H et al. (APR 2015)
Stem cells and development 24 8 948--61
CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells.
Basic fibroblast growth factor (bFGF) is a crucial factor sustaining human pluripotent stem cells (hPSCs). We designed this study to search the substitutive factors other than bFGF for the maintenance of hPSCs by using human placenta-derived conditioned medium without exogenous bFGF (hPCCM-),containing chemokine (C-X-C motif) receptor 2 (CXCR2) ligands,including interleukin (IL)-8 and growth-related oncogene $\$(GRO$\$),which were developed on the basis of our previous studies. First,we confirmed that IL-8 and/or GRO$\$ independent roles to preserve the phenotype of hPSCs. Then,we tried CXCR2 blockage of hPSCs in hPCCM- and verified the significant decrease of pluripotency-associated genes expression and the proliferation of hPSCs. Interestingly,CXCR2 suppression of hPSCs in mTeSR™1 containing exogenous bFGF decreased the proliferation of hPSCs while maintaining pluripotency characteristics. Lastly,we found that hPSCs proliferated robustly for more than 35 passages in hPCCM- on a gelatin substratum. Higher CXCR2 expression of hPSCs cultured in hPCCM- than those in mTeSR™1 was observable. Our findings suggest that CXCR2 and its related ligands might be novel factors comparable to bFGF supporting the characteristics of hPSCs and hPCCM- might be useful for the maintenance of hPSCs as well as for the accurate evaluation of CXCR2 role in hPSCs without the confounding influence of exogenous bFGF.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chichagova V et al. ( 2016)
1353 285--307
Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro,increase our understanding of human embryonic development,and provide clinically relevant cell types for transplantation,drug testing,and toxicology studies. Since their discovery,numerous advances have been made in order to eliminate issues such as vector integration into the host genome,low reprogramming efficiency,incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally,we illustrate methods by which to validate pluripotency of the resulting stem cell population.
View Publication
Zaidi SK et al. (SEP 2016)
Journal of Cellular Physiology 231 9 2007--2013
Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark
Embryonic stem cells (ESCs) exhibit unrestricted and indefinite,but stringently controlled,proliferation,and can differentiate into any lineage in the body. In the current study,we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs,we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines,a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches,we discovered that,RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1,M,and G2 phases of the cell cycle. Interestingly,the rDNA repeats are marked by the activating H3K4me3 only in the M phase,and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc,a known regulator of cell growth and proliferation,occupies both the rRNA genes and RPGs. Functionally,down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together,our results show that expression of rRNA,which is regulated by the Myc pluripotency transcription factor,and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013,2016. textcopyright 2016 Wiley Periodicals,Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Mali P et al. (APR 2010)
Stem cells (Dayton,Ohio) 28 4 713--20
Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.
We report here that butyrate,a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent,greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment,the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (textgreater100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines,including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors,show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation,we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming,butyrate treatment enhanced histone H3 acetylation,promoter DNA demethylation,and the expression of endogenous pluripotency-associated genes,including DPPA2,whose overexpression partially substitutes for butyrate stimulation. Thus,butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover,butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells,including cells from patients that are more refractory to reprogramming.
View Publication
产品类型:
产品号#:
72212
产品名:
RG108
文献
Emre N et al. (JAN 2010)
PLoS ONE 5 8 e12148
The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers
BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs) to manipulations,the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS) can be low. Additionally,a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK) inhibitor,Y-27632,previously has been identified as enhancing survival of hESCs upon single-cell dissociation,as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3,TRA-1-81,and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions,cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically,treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632,hESCs were further analyzed. Specifically,hESCs sorted with and without the addition of Y-27632 retained normal morphology,expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry,and maintained a stable karyotype. In addition,the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency,and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types,identification and isolation of stem cell subpopulations,and generation of single cell clones. Finally,these results demonstrate an additional application of ROCK inhibition to hESC research.
View Publication
Zagoura D et al. (SEP 2016)
Neurochemistry international
Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology,including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore,in the current study,we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM),as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes,NQO1 and SRXN1. Interestingly,exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover,rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH(+)) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zou Y et al. (FEB 2017)
Biogerontology 18 1 69--84
Telomere length is regulated by FGF-2 in human embryonic stem cells and affects the life span of its differentiated progenies.
The ability of human embryonic stem cells (hESCs) to proliferate indefinitely is attributed to its high telomerase activity and associated long telomere. However,factors regulating telomere length in hESCs remain largely uncharacterized. The aims of this study were,to identify factors which modulate telomere length of hESCs,and to determine if the telomere length of hESCs influences cellular senescence of its differentiated progeny cells. Telomerase reverse transcriptase (TERT) gene expression,telomerase activity and telomere length of hESCs cultured in different culture systems were compared. Genetically identical hESCs of different telomere lengths were differentiated into fibroblasts simultaneously,and the population doubling and cellular senescence levels were determined. We found that telomere lengths were significantly different in different culture systems and Fibroblast growth factor-2 (FGF-2) upregulated TERT expression,telomerase activity and telomere length via Wnt/β-catenin signaling pathway in hESCs in a significant manner. We also provide evidence that fibroblast differentiated from hESCs with longer telomere exhibited significant more population doublings and longer life span than those derived from hESCs with shorter telomeres. Thus,FGF-2 levels in hESCs culture systems can be manipulated to generate cells with longer telomere which would be advantageous in the applications of hESCs in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
ndrea de Oliveira Georges JA et al. (AUG 2014)
Stem cell reviews 10 4 472--479
Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation,whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans,or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs,suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci,characteristic of the inactive X. Moreover,analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Kallas A et al. (FEB 2014)
Stem Cells International 2014 298163
SOX2 is regulated differently from NANOG and OCT4 in human embryonic stem cells during early differentiation initiated with sodium butyrate
Transcription factors NANOG,OCT4,and SOX2 regulate self-renewal and pluripotency in human embryonic stem (hES) cells; however,their expression profiles during early differentiation of hES cells are unclear. In this study,we used multiparameter flow cytometric assay to detect all three transcription factors (NANOG,OCT4,and SOX2) simultaneously at single cell level and monitored the changes in their expression during early differentiation towards endodermal lineage (induced by sodium butyrate). We observed at least four distinct populations of hES cells,characterized by specific expression patterns of NANOG,OCT4,and SOX2 and differentiation markers. Our results show that a single cell can express both differentiation and pluripotency markers at the same time,indicating a gradual mode of developmental transition in these cells. Notably,distinct regulation of SOX2 during early differentiation events was detected,highlighting the potential importance of this transcription factor for self-renewal of hES cells during differentiation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Dang LTH et al. (SEP 2014)
Biomaterials 35 27 7786--7799
Inhibition of apoptosis in human induced pluripotent stem cells during expansion in a defined culture using angiopoietin-1 derived peptide QHREDGS
Adhesion molecule signaling is critical to human pluripotent stem cell (hPSC) survival,self-renewal,and differentiation. Thus,hPSCs are grown as clumps of cells on feeder cell layers or poorly defined extracellular matrices such as Matrigel. We sought to define a small molecule that would initiate adhesion-based signaling to serve as a basis for a defined substrate for hPSC culture. Soluble angiopoeitin-1 (Ang-1)-derived peptide QHREDGS added to defined serum-free media increased hPSC colony cell number and size during long- and short-term culture when grown on feeder cell layers or Matrigel,i.e. on standard substrates,without affecting hPSC morphology,growth rate or the ability to differentiate into multiple lineages both invitro and invivo. Importantly,QHREDGS treatment decreased hPSC apoptosis during routine passaging and single-cell dissociation. Mechanistically,the interaction of QHREDGS with ??1-integrins increased expression of integrin-linked kinase (ILK),increased expression and activation of extracellular signal-regulated kinases 1/2 (ERK1/2),and decreased caspase-3/7 activity. QHREDGS immobilization to polyethylene glycol hydrogels significantly increased cell adhesion in a dose-dependent manner. We propose QHREDGS as a small molecule inhibitor of hPSC apoptosis and the basis of an affordable defined substrate for hPSC maintenance. ?? 2014 Elsevier Ltd.
View Publication