Optimized AAV capsids for basal ganglia diseases show robust potency and distribution
Huntington’s disease and other disorders of the basal ganglia create challenges for biomolecule-based medicines given the poor accessibility of these deep brain structures following intracerebral or intravascular delivery. Here,we found that low dose,low volume delivery of unbiased AAV libraries into the globus pallidus allowed recovery of novel capsids capable of broad access to key deep brain and cortical structures relevant for human therapies. One such capsid,AAV-DB-3,provided transduction of up to 45% of medium spiny neurons in the adult NHP striatum,along with substantial transduction of relevant deep layer neurons in the cortex. Notably,AAV-DB-3 behaved similarly in mice as in NHPs and potently transduced human neurons derived from induced pluripotent stem cells. Thus,AAV-DB-3 provides a unique AAV for network level brain gene therapies that translates up and down the evolutionary scale for preclinical studies and eventual clinical use. To date,brain gene therapies require high vector doses. Here,authors devised an AAV capsid screen and found variants with unprecedented potency for transduction of deep brain and cortical neurons and human iPSC-neurons with cell tropism relevant for Huntington’s and Parkinson’s disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
The Journal of Experimental Medicine 222 5
KLF family members control expression of genes required for tissue macrophage identities
This work demonstrates that group 2 KLF family transcription factors are critical for specifying the identity of distinct tissue-resident macrophages. KLF2 directly controls expression of genes previously shown to be necessary in cavity macrophages,while KLF4 may play a similar role in alveolar macrophages. Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Krüppel-like factor 2 (KLF2) in the development of embryonically derived large cavity macrophages (LCMs) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity,such as retinoic acid receptors and GATA6,but also is required for induction of many other transcripts that define the identity of these cells. Our results suggest that KLF4 may similarly regulate the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors,such as group 2 KLFs,can play important roles in the specification of distinct identities of tissue-resident macrophages.
View Publication
产品类型:
产品号#:
19861
19861RF
产品名:
EasySep™小鼠单核细胞分选试剂盒
RoboSep™ 小鼠单核细胞分选试剂盒
D. Cabañero et al. (Jun 2025)
The Journal of Headache and Pain 26 1
Cold receptor TRPM8 as a target for migraine-associated pain and affective comorbidities
Genetic variations in the Trpm8 gene that encodes the cold receptor TRPM8 have been linked to protection against polygenic migraine,a disabling condition primarily affecting women. Noteworthy,TRPM8 has been recently found in brain areas related to emotional processing,suggesting an unrecognized role in migraine comorbidities. Here,we use mouse behavioural models to investigate the role of Trpm8 in migraine-related phenotypes. Subsequently,we test the efficacy of rapamycin,a clinically relevant TRPM8 agonist,in these behavioural traits and in human induced pluripotent stem cell (iPSC)-derived sensory neurons. We report that Trpm8 null mice exhibited impulsive and depressive-like behaviours,while also showing frequent pain-like facial expressions detected by an artificial intelligence algorithm. In a nitroglycerin-induced migraine model,Trpm8 knockout mice of both sexes developed anxiety and mechanical hypersensitivity,whereas wild-type females also displayed depressive-like phenotype and hypernociception. Notably,rapamycin alleviated pain-related behaviour through both TRPM8-dependent and independent mechanisms but lacked antidepressant activity,consistent with a peripheral action. The macrolide ionotropically activated TRPM8 signalling in human sensory neurons,emerging as a new candidate for intervention. Together,our findings underscore the potential of TRPM8 for migraine relief and its involvement in affective comorbidities,emphasizing the importance of addressing emotional symptoms to improve clinical outcomes for migraine sufferers,especially in females. The online version contains supplementary material available at 10.1186/s10194-025-02082-4.
View Publication
H. Sim et al. (may 2020)
International journal of molecular sciences 21 10
Iroquois Homeobox Protein 2 Identified as a Potential Biomarker for Parkinson's Disease.
The diagnosis of Parkinson's disease (PD) is initiated after the occurrence of motor symptoms,such as resting tremors,rigidity,and bradykinesia. According to previous reports,non-motor symptoms,notably gastrointestinal dysfunction,could potentially be early biomarkers in PD patients as such symptoms occur earlier than motor symptoms. However,connecting PD to the intestine is methodologically challenging. Thus,we generated in vitro human intestinal organoids from PD patients and ex vivo mouse small intestinal organoids from aged transgenic mice. Both intestinal organoids (IOs) contained the human LRRK2 G2019S mutation,which is the most frequent genetic cause of familial and sporadic PD. By conducting comprehensive genomic comparisons with these two types of IOs,we determined that a particular gene,namely,Iroquois homeobox protein 2 (IRX2),showed PD-related expression patterns not only in human pluripotent stem cell (PSC)-derived neuroectodermal spheres but also in human PSC-derived neuronal cells containing dopaminergic neurons. We expected that our approach of using various cell types presented a novel technical method for studying the effects of multi-organs in PD pathophysiology as well as for the development of diagnostic markers for PD.
View Publication
Inagi R et al. (NOV 2007)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 22 11 3311--7
Establishment of a sandwich ELISA for human megsin, a kidney-specific serine protease inhibitor.
BACKGROUND: We previously identified a novel serine protease inhibitor (serpin),megsin,which is predominantly expressed in the kidney. Megsin expression is up-regulated in human and experimental renal diseases associated with mesangial proliferation and expansion,suggesting that urinary megsin may be a novel diagnostic marker for some renal diseases. METHODS: We established a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for megsin and measured urinary megsin of patients with various renal diseases. RESULTS: Megsin ELISA specifically detected megsin but not other serpins. The detection limit was 0.04 ng/ml,which allowed detection of urinary megsin in 3.6% of healthy individuals. The antigenic epitope in the urine detected by the ELISA was confirmed as megsin protein by time-of-flight mass spectrometry. Among patients with rapidly progressive glomerulonephritis (n = 18),55.6% were urinary megsin-positive,while 24.1% in IgA nephropathy (n = 112) and 15.1% in chronic non-IgA glomerulonephritis (n = 245) were urinary megsin-positive,respectively. Among patients with chronic renal failure due to unknown causes (n = 74),18.9% were positive for urinary megsin. In diabetic patients with or without nephropathy (n = 1073),12.3% were urinary megsin-positive,while positivity of urinary megsin in patients with non-renal diseases (n = 768) was equivalent (3.3%) to that of healthy individuals. Of note,when urinary megsin-positive patients with diabetic nephropathy (n = 71) were classified into four stages by their proteinuria and estimated glomerular filtration rate,urinary megsin excretion increased as the stage progressed up to stage 3A,suggesting correlation of that with mesangial expansion level. Urinary megsin decreased in the advanced stage,probably reflecting development of glomerulosclerosis. CONCLUSION: We established a high-sensitive megsin ELISA,which detects urinary megsin in some patients with renal diseases and in only a few healthy subjects. Megsin ELISA may be a novel diagnostic tool for renal diseases.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Stavridis MP et al. (AUG 2007)
Development (Cambridge,England) 134 16 2889--94
A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification.
Neural tissue formation is induced by growth factors that activate networks of signal transduction cascades that ultimately lead to the expression of early neural genes,including transcription factors of the SoxB family. Here,we report that fibroblast growth factor (FGF)-induced Erk1/2 (Mapk3 and Mapk1,respectively) mitogen-activated protein kinase (MAPK),but not phosphatidylinositol 3'-OH kinase (PI3K,Pik3r1),signalling is required for neural specification in mouse embryonic stem (ES) cells and in the chick embryo. Further,blocking Erk1/2 inhibits the onset of key SoxB genes in both mouse ES cells (Sox1) and chick embryos (Sox2 and Sox3) and,in both contexts,Erk1/2 signalling is required during only a narrow time window,as neural specification takes place. In the absence of Erk1/2 signalling,differentiation of ES cells stalls following Fgf5 upregulation. Using differentiating ES cells as a model for neural specification,we demonstrate that sustained Erk1/2 activation controls the transition from an Fgf5-positive,primitive ectoderm-like cell state to a neural progenitor cell state without attenuating bone morphogenetic protein (BMP) signalling and we also define the minimum period of Erk1/2 activity required to mediate this key developmental step. Together,these findings identify a conserved,specific and stage-dependent requirement for Erk1/2 signalling downstream of FGF-induced neural specification in higher vertebrates and provide insight into the signalling dynamics governing this process.
View Publication
产品类型:
产品号#:
72162
72164
产品名:
PD173074
Li H et al. (AUG 2010)
Blood 116 7 1060--9
Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development.
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells,T cells,neutrophils,and for the maintenance of hematopoietic stem cell function. However,the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here,we provide evidence that Id2 is a transcriptional target of Gfi-1,and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors,myeloid progenitors,T-cell progenitors,and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
Rodrigues G et al. (APR 2014)
Stem Cell Reviews and Reports 10 2 151--161
Integrated Platform for Production and Purification of Human Pluripotent Stem Cell-Derived Neural Precursors
Human pluripotent stem cells (hPSCs) are a promising source of cells for clinical applications,such as transplantation of clinically engineered tissues and organs,and drug discovery programs due to their ability to self-renew and to be differentiated into cells from the three embryonic germ layers. In this study,the differentiation of two hPSC-lines into neural precursors (NPs) was accomplished with more than 80 % efficiency,by means of the dual-SMAD inhibition protocol,based on the use of two small molecules (SB431542 and LDN193189) to generate Pax6 and Nestin-positive neural entities. One of the major hurdles related to the in vitro generation of PSC-derived populations is the tumorigenic potential of cells that remain undifferentiated. These remaining hPSCs have the potential to generate teratomas after being transplanted,and may interfere with the outcome of in vitro differentiation protocols. One strategy to tackle this problem is to deplete these contaminating" cells during the differentiation process. Magnetic activated cell sorting (MACS) was used for the first time for purification of hPSC-derived NPs after the neural commitment stage using anti-Tra-1-60 micro beads for negative selection of the unwanted hPSCs. The depletion had an average efficiency of 80.4 ± 5 % and less than 1.5 % of Tra-1-60 positive cells were present in the purified populations. After re-plating
View Publication