Liu Y et al. (FEB 1992)
The Journal of experimental medicine 175 2 437--45
Heat-stable antigen is a costimulatory molecule for CD4 T cell growth.
Optimal induction of clonal expansion by normal CD4 T cells requires a ligand that can engage the T cell receptor as well as functionally defined costimulatory activity on the same antigen-presenting cell surface. While the presence of effective costimulation induces proliferation,T cell receptor ligation in its absence renders T cells inactive or anergic. The molecular basis of this costimulatory activity remains to be defined. Here we describe a monoclonal antibody that can block the costimulatory activity of splenic accessory cells. Treatment with this antibody not only blocks the proliferation of CD4 T cells to a T cell receptor ligand,but also induces T cell nonresponsiveness to subsequent stimulation. Sequence analysis of the antigen recognized by this antibody indicates that it recognizes a protein that is identical to heat-stable antigen. Gene transfer experiments directly demonstrate that this protein has costimulatory activity. Thus,heat-stable antigen meets the criteria for a costimulator of T cell clonal expansion.
View Publication
Li Z et al. (MAR 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 13 5004--9
Simple piggyBac transposon-based mammalian cell expression system for inducible protein production.
Reported here is a piggyBac transposon-based expression system for the generation of doxycycline-inducible,stably transfected mammalian cell cultures for large-scale protein production. The system works with commonly used adherent and suspension-adapted mammalian cell lines and requires only a single transfection step. Moreover,the high uniform expression levels observed among clones allow for the use of stable bulk cell cultures,thereby eliminating time-consuming cloning steps. Under continuous doxycycline induction,protein expression levels have been shown to be stable for at least 2 mo in the absence of drug selection. The high efficiency of the system also allows for the generation of stable bulk cell cultures in 96-well format,a capability leading to the possibility of generating stable cell cultures for entire families of membrane or secreted proteins. Finally,we demonstrate the utility of the system through the large-scale production (140-750 mg scale) of an endoplasmic reticulum-resident fucosyltransferase and two potential anticancer protein therapeutic agents.
View Publication
M. R. Hildebrandt et al. (dec 2019)
Stem cell reports 13 6 1126--1141
Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation.
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons,cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids,T lymphocytes,and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly,nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac,neurological,or other disease associations. Overall,PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling,and variant-preferred healthy control lines were identified for specific disease settings.
View Publication
(Jul 2025)
Frontiers in Bioengineering and Biotechnology 13 12
360° size-adjustable microelectrode array system for electrophysiological monitoring of cerebral organoids
This paper presents a 360°,size-adjustable microelectrode array (MEA) system for the long-term electrophysiological monitoring of cerebral organoids derived from human pluripotent stem cells. The system consists of eight independently positionable multielectrode probes,each carrying eight electrodes arranged vertically. This configuration resulted in 64 recording channels surrounding the organoid. The multielectrode probes were mounted on custom-designed miniature manipulators with three degrees of freedom. This setup enabled positioning and contact with organoids of varying sizes (approximately 1–3.7 mm in diameter). The design allowed circumferential access and facilitated standard incubator-based cultivation without disrupting the recording setup. Fabricated using flexible printed circuit technology,this MEA system offers relatively low production costs. It is also amenable to widespread implementation in laboratory settings. Experimental results demonstrated the successful recording of neuronal activity,including spike detection and signal stability,over 2 weeks of continuous organoid culture. These results suggests that the three-dimensional system provides broad spatial coverage and supports long-term monitoring for basic biomedical research. It also holds potential for future applications such as biohybrid computing.
View Publication
产品类型:
产品号#:
08570
100-0483
100-0484
100-0276
100-1130
产品名:
STEMdiff™ 脑类器官试剂盒
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(May 2024)
Nature Communications 15
Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data
The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases,thereby facilitating the identification of alternative splicing events and isoform expressions. Recently,numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless,there remains a deficiency in comparative studies that systemically evaluate the performance of these tools,which are implemented with different algorithms,under various simulations that encompass potential influencing factors. In this study,we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data,which represented diverse sequencing platforms generated by an in-house simulator,RNA sequins (sequencing spike-ins) data,as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS,with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data. Recently,various computational tools have emerged for detecting mRNA isoforms using long-read sequencing data. Here,the authors systemically evaluate and compare the performance of these tools.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
W. Zheng et al. (oct 2020)
Cancer research
RIG-I-like receptor LGP2 is required for tumor control by radiation therapy.
Dendritic cells (DC) play an essential role in innate immunity and radiation-elicited immune responses. LGP2 is a RIG-I like receptor (RLR) involved in cytoplasmic RNA recognition and anti-viral responses. Although LGP2 has also been linked to cell survival of both tumor cells and T cells,the role of LGP2 in mediating DC function and anti-tumor immunity elicited by radiotherapy remains unclear. Here we report that tumor DC are linked to the clinical outcome of breast cancer patients who received radiotherapy (RT) and the presence of DC correlates with gene expression of LGP2 in the tumor microenvironment. In preclinical models,host LGP2 was essential for optimal anti-tumor control by ionizing radiation (IR). The absence of LGP2 in DC dampened type I interferon production and the priming capacity of DC. In the absence of LGP2,MDA5-mediated activation of type I IFN signaling was abrogated. The MDA5/LGP2 agonist high molecular weight poly I: C improved the anti-tumor effect of IR. This study reveals a previously undefined role of LGP2 in host immunity and provides a new strategy to improve the efficacy of radiotherapy.
View Publication
产品类型:
产品号#:
18953
18953RF
产品名:
EasySep™小鼠CD8a正选试剂盒II
RoboSep™ 小鼠CD8a正选试剂盒II
E. Vokali et al. (jan 2020)
Nature communications 11 1 538
Lymphatic endothelial cells prime na\ive CD8+ T cells into memory cells under steady-state conditions."
Lymphatic endothelial cells (LECs) chemoattract na{\{i}}ve T cells and promote their survival in the lymph nodes and can cross-present antigens to na{\"{i}}ve CD8+ T cells to drive their proliferation despite lacking key costimulatory molecules. However the functional consequence of LEC priming of CD8+ T cells is unknown. Here we show that while many proliferating LEC-educated T cells enter early apoptosis the remainders comprise a long-lived memory subset with transcriptional metabolic and phenotypic features of central memory and stem cell-like memory T cells. In vivo these memory cells preferentially home to lymph nodes and display rapid proliferation and effector differentiation following memory recall and can protect mice against a subsequent bacterial infection. These findings introduce a new immunomodulatory role for LECs in directly generating a memory-like subset of quiescent yet antigen-experienced CD8+ T cells that are long-lived and can rapidly differentiate into effector cells upon inflammatory antigenic challenge."""
View Publication