Crispí et al. (OCT 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 7 4675--81
Human TCR-alpha beta+ CD4- CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype.
The origin and function of human double negative (DN) TCR-alphabeta+ T cells is unknown. They are thought to contribute to the pathogenesis of systemic lupus erythematosus because they expand and accumulate in inflamed organs. In this study,we provide evidence that human TCR-alphabeta+ CD4- CD8- DN T cells can derive from activated CD8+ T cells. Freshly isolated TCR-alphabeta+ DN T cells display a distinct gene expression and cytokine production profile. DN cells isolated from peripheral blood as well as DN cells derived in vitro from CD8+ T cells produce a defined array of proinflammatory mediators that includes IL-1beta,IL-17,IFN-gamma,CXCL3,and CXCL2. These results indicate that,upon activation,CD8+ T cells have the capacity to acquire a distinct phenotype that grants them inflammatory capacity.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
Hidalgo LG et al. (MAR 2008)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 8 3 627--36
The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4(+) CTL, CD8(+) CTL and NK cells.
Transcripts expressed in cytotoxic T lymphocytes (CTL) have mechanistic and diagnostic importance in transplantation. We used microarrays to select CTL-associated transcripts (CATs) expressed in human CD4(+) CTL,CD8(+) CTL and NK cells,excluding transcripts expressed in B cells,monocytes and kidney. This generated three transcript sets: CD4(+)-associated,CD8(+)-associated and NK-associated. Surprisingly,many CATs were expressed in effector memory cells e.g. granzyme B/GZMB,interferon-gamma/IFNG. Transcript expression was very similar between CD4(+) and CD8(+) CTL. There were no transcripts highly selective for CD4(+) CTL or CD8(+) CTL: for example,cytotoxic molecule transcripts (perforin,granzymes,granulysin) were shared between CD8(+) CTL and CD4(+) CTL although expression remained higher in CD8(+) CTL. Transcripts that differentiated between CD8(+) CTL and CD4(+) CTL were primarily those shared between CD8(+) CTL and NK cells (e.g. NK receptors KLRC1,KLRC3,KLRD1,KLRK1). No transcripts could differentiate CD4(+) CTL from CD8(+) CTL but NK cell-associated transcripts could differentiate NK cells from CTL. This study serves as a foundation for the interpretation of CATs in rejecting allografts and highlights the extensive sharing of CATs among CD4(+) CTL,CD8(+) CTL and effector memory T cells.
View Publication
产品类型:
产品号#:
18058
18058RF
19053
19053RF
19052
19052RF
19055
19055RF
19054
19054RF
产品名:
EasySep™人CD8+ T细胞富集试剂盒
RoboSep™ 人CD8+ T细胞富集试剂盒含滤芯吸头
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
EasySep™人B细胞富集试剂盒
RoboSep™ 人B细胞富集试剂盒含滤芯吸头
Schwarzenbach H et al. (FEB 2009)
Clinical cancer research : an official journal of the American Association for Cancer Research 15 3 1032--8
Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer.
PURPOSE: Circulating cell-free DNA in the blood of cancer patients harbors tumor-specific aberrations. Here,we investigated whether this DNA might also reflect the presence of circulating tumor cells (CTC). EXPERIMENTAL DESIGN: To identify the source of cell-free DNA in blood,plasma derived from 81 patients with prostate cancer was examined for CTCs and cell-free DNA. An epithelial immunospot assay was applied for detection of CTCs,and a PCR-based fluorescence microsatellite analysis with a panel of 14 polymorphic markers was used for detection of allelic imbalances (AI). RESULTS: The plasma DNA levels significantly correlated with the diagnosis subgroups of localized (stage M0,n = 69) and metastasized prostate cancer (stage M1,n = 12; P = 0.03) and with the tumor stage of these patients (P textless 0.005). AI was found on cell-free DNA in plasma from 45.0% and 58.5% of M0 and M1 patients,respectively. Detection of CTCs showed that 71.0% or 92.0% of the M0 and M1 patients harbored 1 to 40 CTCs in their blood,respectively. The occurrence of CTCs correlated with tumor stage (P textless 0.03) and increasing Gleason scores (P = 0.04). Notably,significant associations of the number of CTCs with the AI frequencies at the markers D8S137 (P = 0.03),D9S171 (P = 0.04),and D17S855 (P = 0.02) encoding the cytoskeletal protein dematin,the inhibitor of the cyclin-dependent kinase CDKN2/p16 and BRCA1,respectively,were observed. CONCLUSIONS: These findings show,for the first time,a relationship between the occurrence of CTCs and circulating tumor-associated DNA in blood,which,therefore,might become a valuable new source for monitoring metastatic progression in cancer patients.
View Publication
产品类型:
产品号#:
15127
15167
产品名:
含抗CD36的RosetteSep™ CTC富集抗体混合物
含抗CD36的 RosetteSep™ CTC富集抗体混合物
Prasmickaite L et al. (JAN 2010)
PloS one 5 5 e10731
Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma.
BACKGROUND: Malignant melanoma is an exceptionally aggressive,drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common,but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation,i.e. cancer stem cells (CSC),exists in malignant melanoma. Rather,it is suggested that multiple cell populations are implicated in initiation and progression of the disease,making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms,Aldehyde Dehydrogenase (ALDH),which plays a role in stem cell biology and resistance,is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore,the presence of ALDH(+) cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures,xenografts and patient biopsies,we showed that aggressive melanoma harboured a large,distinguishable ALDH(+) subpopulation. In vivo,ALDH(+) cells gave rise to ALDH(-) cells,while the opposite conversion was rare,indicating a higher abilities of ALDH(+) cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However,both ALDH(+) and ALDH(-) cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore,both subpopulations showed similar sensitivity to the anti-melanoma drugs,dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells,implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma,and arguing against ALDH as a universal" marker. Besides�
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Quintarelli C et al. (MAR 2011)
Blood 117 12 3353--62
High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells.
The cancer testis antigen (CTA) preferentially expressed antigen of melanoma (PRAME) is overexpressed by many hematologic malignancies,but is absent on normal tissues,including hematopoietic progenitor cells,and may therefore be an appropriate candidate for T cell-mediated immunotherapy. Because it is likely that an effective antitumor response will require high-avidity,PRAME-specific cytotoxic T lymphocytes (CTLs),we attempted to generate such CTLs using professional and artificial antigen-presenting cells loaded with a peptide library spanning the entire PRAME protein and consisting of 125 synthetic pentadecapeptides overlapping by 11 amino acids. We successfully generated polyclonal,PRAME-specific CTL lines and elicited high-avidity CTLs,with a high proportion of cells recognizing a previously uninvestigated HLA-A*02-restricted epitope,P435-9mer (NLTHVLYPV). These PRAME-CTLs could be generated both from normal donors and from subjects with PRAME(+) hematologic malignancies. The cytotoxic activity of our PRAME-specific CTLs was directed not only against leukemic blasts,but also against leukemic progenitor cells as assessed by colony-forming-inhibition assays,which have been implicated in leukemia relapse. These PRAME-directed CTLs did not affect normal hematopoietic progenitors,indicating that this approach may be of value for immunotherapy of PRAME(+) hematologic malignancies.
View Publication
产品类型:
产品号#:
产品名:
Liu Y et al. (APR 2013)
Cellular reprogramming 15 2 107--116
$\$-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs.
The shortage of human organs and tissues for transplant has led to significant interest in xenotransplantation of pig tissues for human patients. However,transplantation of pig organs results in an acute immune rejection,leading to death of the organ within minutes. The $\$-1,3-galactosyltransferase (GALT) gene has been knocked out in pigs to reduce rejection,yet additional genes need to be modified to ultimately make pig tissue immunocompatible with humans. The development of pig induced pluripotent stem cells (piPSCs) from GALT knockout (GALT-KO) tissue would provide an excellent cell source for complex genetic manipulations (e.g.,gene targeting) that often require highly robust and proliferative cells. In this report,we generated GALT-KO piPSCs by the overexpression of POU5F1,SOX2,NANOG,LIN28,KLF-4,and C-MYC reprogramming genes. piPSCs showed classical stem cell morphology and characteristics,expressing integrated reprogramming genes in addition to the pluripotent markers AP,SSEA1,and SSEA4. GALT-KO piPSCs were highly proliferative and possessed doubling times and telomerase activity similar to human embryonic stem cells. These results demonstrated successful reprogramming of GALT-KO fibroblasts into GALT-KO piPSCs. GALT-KO piPSCs are potentially an excellent immortal cell source for the generation of pigs with complex genetic modifications for xenotransplantation,somatic cell nuclear transfer,or chimera formation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reibetanz U et al. (JUN 2016)
ACS Nano 10 7 6563--6573
Influence of Growth Characteristics of Induced Pluripotent Stem Cells on Their Uptake Efficiency for Layer-by-Layer Microcarriers
Induced pluripotent stem cells (iPSCs) have the ability to differentiate in any specialized somatic cell type,which makes them an attractive tool for a wide variety of scientific approaches,including regenerative medicine. However,their pluripotent state and their growth in compact colonies render them difficult to access and,therefore,restrict delivery of specific agents for cell manipulation. Thus,our investigation focus was set on the evaluation of the capability of Layer-by-Layer (LbL) designed microcarriers to serve as a potential drug delivery system to iPSCs,as they offer several appealing advantages. Most notably,these carriers allow for the transport of active agents in a protected environment and for a rather specific delivery through surface modifications. As we could show,charge and mode of LbL carrier application as well as the size of the iPSC colonies determine the interaction with and the uptake rate by iPSCs. None of the examined conditions had an influence on iPSC colony properties such as colony morphology and size or maintenance of pluripotent properties. An overall interaction rate of LbL carriers with iPSCs of up to 20 % was achieved. Those data emphasize the applicability of LbL carriers for stem cell research. Additionally,the potential use of LbL carriers as a promising delivery tool for iPSCs was contrasted to viral particles and liposomes. The identified differences among those delivery tools have substantiated our major conclusion that LbL carrier uptake rate is influenced by characteristic features of the iPSC colonies (most notably colony size) in addition to their surface charges.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wei Y et al. (MAR 2017)
Placenta 51 28--37
Generation of trophoblast-like cells from the amnion in vitro: A novel cellular model for trophoblast development.
Despite the high incidence of trophoblast-related diseases,the molecular mechanism of inadequate early trophoblast development is still unclear due to the lack of an appropriate cellular model in vitro. In the present study,we reprogrammed the amniotic cells to be induced pluripotent stem cells (iPSCs) via a non-virus and non-integrated method and subsequently differentiated them into trophoblast-like cells by a modified BMP4 strategy in E6 medium. Compared with the previously studied trophoblast-like cells from ESCs,the iPSCs derived trophoblast-like cells behave similarly in terms of gene expression profiles and biofunctions. Also we confirmed the differentiating tendency from iPSCs to be syncytiotrophoblasts-like cells might be caused by inappropriate differentiating oxygen condition. Additionally,we preliminarily indicated in vitro artificial" differentiation of iPSCs also undergoing a possible trophoblastic stem cell stage as witnessed in vivo. In conclusion we provided an in vitro cellular model to study early trophoblast development for specific individual by using the feasible amnion.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
H. Kearney et al. (Sep 2025)
Stem Cell Reviews and Reports 21 8
Dimethyl Sulfoxide Conditions Induced Pluripotent Stem Cells for more Efficient Nephron Progenitor and Kidney Organoid Differentiation
The field of human induced pluripotent stem cells (hiPSCs) has seen significant progress since the discovery of reprogramming somatic cells using the transcription factors Oct4,Sox2,Klf4,and c-Myc. hiPSCs are similar to embryonic stem cells in a primed state of pluripotency and have the potential to differentiate into any adult human cell type,offering a versatile tool for research and potential therapeutic applications. However,the efficiency of differentiation protocols for generating complex structures with multiple cell types,Like kidney organoids,remains a challenge. This study investigates the impact of treating hiPSCs with a low-dose dimethyl sulfoxide to enhance kidney organoid differentiation using the stepwise 2D monolayer-based protocol developed by Morizane et al. 2017. We found that treating hiPSCs with 1–2% DMSO affects gene expression of pluripotent transcription factors,the epigenetic landscape,and hiPSC colony morphology. Our findings also suggest DMSO treatment enhances the expression of the key metanephric mesenchyme nephron progenitor marker,SIX2 after 9 days of kidney organoid differentiation and helps improve hiPSC differentiation protocol efficiency toward the development of tubular kidney organoids. Further research is needed to fully elucidate the mechanisms underlying these effects and refine the differentiation process for potential in vitro research applications in biomedical research and drug development.Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1007/s12015-025-10971-z.
View Publication
Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling.
Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion,but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA,increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically,CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs,which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol,contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus,our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.
View Publication
产品类型:
产品号#:
18780
18780RF
18781
18781RF
19853
19853RF
70025
70025.1
70025.2
70025.3
产品名:
EasySep™ 小鼠CD11c正选试剂盒 II
RoboSep™ 小鼠CD11c正选试剂盒II
EasySep™小鼠CD11c正选试剂盒II及脾脏解离液
RoboSep™ 小鼠CD11c正选试剂盒II及脾脏解离液
EasySep™小鼠CD8+ T细胞分选试剂盒
RoboSep™ 小鼠CD8+ T细胞分选试剂盒
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
Orlandi A et al. (APR 2008)
American journal of physiology. Heart and circulatory physiology 294 4 H1541--9
Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture.
Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB),cocultured with neonatal mouse cardiomyocytes,acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days,mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions,acquired electrophysiological properties similar to those of cardiomyocytes,and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However,RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion,under our experimental conditions,hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However,the expression of human-specific cardiac genes was undetectable by RT-PCR.
View Publication