Protocol for Screening Host-Targeting Antivirals (HTAs) Using Human PBMCs and pDCs
This protocol offers an ex vivo method for screening host-targeting antivirals (HTAs) using human peripheral blood mononuclear cells (PBMCs) or plasmacytoid dendritic cells (pDCs). Unlike virus-targeting antivirals (VTAs),HTAs provide advantages in overcoming drug resistance and offering broad-spectrum protection,especially against rapidly mutating or newly emerging viruses. By focusing on PBMCs or pDCs,known for their high production of humoral factors such as Type I interferons (IFNs),the protocol enables the screening of antivirals that modulate immune responses against viruses. Targeting host pathways,especially innate immunity,allows for species-independent antiviral activity,reducing the likelihood of viral escape mutations. Additionally,the protocol's versatility makes it a powerful tool for testing potential antivirals against various viral pathogens,including emerging viruses,positioning it as an essential resource in both pandemic preparedness and broad-spectrum antiviral research. This approach differentiates itself from existing protocols by focusing on host immune modulation through pDCs,offering a novel avenue for HTA discovery. Key features • Optimized protocol for screening HTAs against dengue virus (DENV),chikungunya virus (CHIKV),and Zika virus (ZIKV). • This protocol is ideal for screening soluble or intravenous-formulated compounds for evaluating their efficacy in experimental settings. • This protocol builds upon the method developed by Tsuji et al. [1] and extends its application to PBMCs and testing against DENV,CHIKV,and ZIKV.
View Publication
产品类型:
产品号#:
20144
17977
17977RF
产品名:
EasySep™缓冲液
EasySep™人浆细胞样DC分选试剂盒
RoboSep™ 人浆细胞样DC分选试剂盒
M. K. Schwinn et al. (jun 2020)
Scientific reports 10 1 8953
A Simple and Scalable Strategy for Analysis of Endogenous Protein Dynamics.
The ability to analyze protein function in a native context is central to understanding cellular physiology. This study explores whether tagging endogenous proteins with a reporter is a scalable strategy for generating cell models that accurately quantitate protein dynamics. Specifically,it investigates whether CRISPR-mediated integration of the HiBiT luminescent peptide tag can easily be accomplished on a large-scale and whether integrated reporter faithfully represents target biology. For this purpose,a large set of proteins representing diverse structures and functions,some of which are known or potential drug targets,were targeted for tagging with HiBiT in multiple cell lines. Successful insertion was detected for 86{\%} of the targets,as determined by luminescence-based plate assays,blotting,and imaging. In order to determine whether endogenously tagged proteins yield more representative models,cells expressing HiBiT protein fusions either from endogenous loci or plasmids were directly compared in functional assays. In the tested cases,only the edited lines were capable of accurately reproducing the anticipated biology. This study provides evidence that cell lines expressing HiBiT fusions from endogenous loci can be rapidly generated for many different proteins and that these cellular models provide insight into protein function that may be unobtainable using overexpression-based approaches.
View Publication
产品类型:
产品号#:
07801
07811
07851
07861
10971
10991
15021
15061
18060
18061
产品名:
Lymphoprep™
Lymphoprep™
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
Lymphoprep™
Lymphoprep™
D. W. Nicholson et al. (jul 1995)
Nature 376 6535 37--43
Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.
The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme,named apopain,is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3,the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro,suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
View Publication
产品类型:
产品号#:
100-0536
100-0537
产品名:
Ac-DEVD-CHO (Trifluoroacetate Salt)
Ac-DEVD-CHO (Trifluoroacetate Salt)
C. M. Rominger et al. (jun 2009)
The Journal of pharmacology and experimental therapeutics 329 3 995--1005
Evidence for allosteric interactions of antagonist binding to the smoothened receptor.
The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development,cell growth,and migration,as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers,and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here,we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands,[(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{\{}[3-(4-pyridinyl)-phenyl]methyl{\}}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist),was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1),an antagonist,did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay,SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{\{}[3-(4-pyridinyl)phenyl]methyl{\}}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists SANT-1 and SANT-2 bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway."
View Publication
McCune K et al. (NOV 2010)
Oncology reports 24 5 1233--9
Loss of ERα and FOXA1 expression in a progression model of luminal type breast cancer: insights from PyMT transgenic mouse model.
The classification of breast cancer into multiple molecular subtypes has necessitated the need for biomarkers that can assess tumor progression and the effects of chemopreventive agents on specific breast cancer subtypes. The goal of this study was to identify biomarkers whose expression are altered along with estrogen receptor α (ERα) in the polyoma middle-T antigen (PyMT) transgenic model of breast cancer and to investigate the chemopreventive activity of phenethyl isothiocyanate (PEITC). The diet of PyMT female mice was fortified with PEITC (8 mmol/kg) and the mammary streak and/or gross tumors and metastases in lungs were subjected to immunohistochemical analyses for ERα,FOXA1,and GATA-3. FOXA1 is associated with luminal type A cancers,while GATA-3 is a marker of luminal progenitor cell differentiation. In both control and PEITC-treated groups,there was a progressive loss of ERα and FOXA1 but persistence of GATA-3 expression indicating that the tumors retain luminal phenotype. Overall,the PyMT induced tumors exhibited the entire gamut of phenotypes from ERα+/FOXA1+/GATA-3+ tumors in the early stage to ERα±/FOXA1-/GATA-3+ in the late stage. Thus,PyMT model serves as an excellent model for studying progression of luminal subtype tumors. PEITC treated animals had multiple small tumors,indicating delay in tumor progression. Although these tumors were histologically similar to those in controls,there was a lower expression of these biomarkers in normal luminal cells indicating delay in tumor initiation. In in vitro studies,PEITC depleted AldeFluor-positive putative stem/progenitor cells,which may partly be responsible for the delay in tumor initiation.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Pineda JR et al. (APR 2013)
EMBO Molecular Medicine 5 4 548--562
Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain
Neurogenesis decreases during aging and following cranial radiotherapy,causing a progressive cognitive decline that is currently untreatable. However,functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover,we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures,irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly,the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice,prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Suljagic M et al. (DEC 2010)
Blood 116 23 4894--905
The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Eμ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling.
Inhibition of antigen-dependent B-cell receptor (BCR) signaling is considered a promising therapeutic approach in chronic lymphocytic leukemia (CLL),but experimental in vivo evidence to support this view is still lacking. We have now investigated whether inhibition of BCR signaling with the selective Syk inhibitor fostamatinib disodium (R788) will affect the growth of the leukemias that develop in the Eμ-TCL1 transgenic mouse model of CLL. Similarly to human CLL,these leukemias express stereotyped BCRs that react with autoantigens exposed on the surface of senescent or apoptotic cells,suggesting that they are antigen driven. We show that R788 effectively inhibits BCR signaling in vivo,resulting in reduced proliferation and survival of the malignant B cells and significantly prolonged survival of the treated animals. The growth-inhibitory effect of R788 occurs despite the relatively modest cytotoxic effect in vitro and is independent of basal Syk activity,suggesting that R788 functions primarily by inhibiting antigen-dependent BCR signals. Importantly,the effect of R788 was found to be selective for the malignant clones,as no disturbance in the production of normal B lymphocytes was observed. Collectively,these data provide further rationale for clinical trials with R788 in CLL and establish the BCR-signaling pathway as an important therapeutic target in this disease.
View Publication
Yu PB et al. (JAN 2008)
Nature chemical biology 4 1 33--41
Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism.
Bone morphogenetic protein (BMP) signals coordinate developmental patterning and have essential physiological roles in mature organisms. Here we describe the first known small-molecule inhibitor of BMP signaling-dorsomorphin,which we identified in a screen for compounds that perturb dorsoventral axis formation in zebrafish. We found that dorsomorphin selectively inhibits the BMP type I receptors ALK2,ALK3 and ALK6 and thus blocks BMP-mediated SMAD1/5/8 phosphorylation,target gene transcription and osteogenic differentiation. Using dorsomorphin,we examined the role of BMP signaling in iron homeostasis. In vitro,dorsomorphin inhibited BMP-,hemojuvelin- and interleukin 6-stimulated expression of the systemic iron regulator hepcidin,which suggests that BMP receptors regulate hepcidin induction by all of these stimuli. In vivo,systemic challenge with iron rapidly induced SMAD1/5/8 phosphorylation and hepcidin expression in the liver,whereas treatment with dorsomorphin blocked SMAD1/5/8 phosphorylation,normalized hepcidin expression and increased serum iron levels. These findings suggest an essential physiological role for hepatic BMP signaling in iron-hepcidin homeostasis.
View Publication