Towards a quality control framework for cerebral cortical organoids
Cerebral organoids offer significant potential for neuroscience research as complex in vitro models that mimic human brain development. However,challenges related to their quality and reproducibility hinder their reliability. Discrepancies in morphology,size,cellular composition,and cytoarchitectural organization limit their applications,particularly in disease modeling,drug screening,and neurotoxicity testing. Critically,current methods for organoid characterization often lack standardization,restricting their broader applicability. To address the need for standardized quality assessment of cerebral organoids,we developed a Quality Control (QC) methodology for 60-day cortical organoids,evaluating five key criteria using a scoring system: morphology,size and growth profile,cellular composition,cytoarchitectural organization,and cytotoxicity. We implemented a hierarchical approach,beginning with non-invasive assessments to exclude low-quality organoids,while reserving in-depth analyses for those that passed the initial evaluation. To validate this framework,we exposed 60-day cortical organoids to graded doses of hydrogen peroxide (H2O2),inducing a range of quality outcomes. The QC system demonstrated its robustness by accurately discriminating organoid qualities. Our proposed QC framework is designed to be user-friendly,flexible,and broadly applicable,making it suitable for routine assessment of cerebral organoid quality. Additionally,its scalability enables industrial applications,offering a valuable tool for advancing both fundamental and pre-clinical research.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-14425-x.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Nov 2024)
Nature Communications 15
Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly,there is increasing potential for generalized BCIs to input information into the brains to restore damage,but their effectiveness is limited when a large injured cavity is caused. Notably,it might be overcome by transplantation of brain organoids into the damaged region. Here,we construct innovative BCIs mediated by implantable organoids,coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs,and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain,promising to repair the damaged brain via regenerating and regulating,potentially directing neurons to preselected targets and recovering functional neural networks in the future. Damaged neural circuits could be improved by generalized BCIs via inputting information into the brains,which is restricted when a large injured cavity caused. Here,the authors construct BCIs mediated by organoid grafts to repair the damaged brain
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
K. Teranishi et al. (Sep 2024)
Scientific Reports 14
Label-free ghost cytometry for manufacturing of cell therapy products
Automation and quality control (QC) are critical in manufacturing safe and effective cell and gene therapy products. However,current QC methods,reliant on molecular staining,pose difficulty in in-line testing and can increase manufacturing costs. Here we demonstrate the potential of using label-free ghost cytometry (LF-GC),a machine learning-driven,multidimensional,high-content,and high-throughput flow cytometry approach,in various stages of the cell therapy manufacturing processes. LF-GC accurately quantified cell count and viability of human peripheral blood mononuclear cells (PBMCs) and identified non-apoptotic live cells and early apoptotic/dead cells in PBMCs (ROC-AUC: area under receiver operating characteristic curve = 0.975),T cells and non-T cells in white blood cells (ROC-AUC = 0.969),activated T cells and quiescent T cells in PBMCs (ROC-AUC = 0.990),and particulate impurities in PBMCs (ROC-AUC ≧ 0.998). The results support that LF-GC is a non-destructive label-free cell analytical method that can be used to monitor cell numbers,assess viability,identify specific cell subsets or phenotypic states,and remove impurities during cell therapy manufacturing. Thus,LF-GC holds the potential to enable full automation in the manufacturing of cell therapy products with reduced cost and increased efficiency. Subject terms: Biotechnology,Cell biology,Immunology,Biomedical engineering
View Publication
产品类型:
产品号#:
100-0956
10981
产品名:
ImmunoCult™ XF培养基
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
R. Raghavan et al. (Jan 2025)
Nature Communications 16
Rational engineering of minimally immunogenic nucleases for gene therapy
Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However,cellular and humoral immunogenicity of genome editing tools,which originate from bacteria,complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases,SaCas9 and AsCas12a. Through MHC-associated peptide proteomics (MAPPs) analysis,we identify putative immunogenic epitopes on each nuclease. Using computational modeling,we rationally design these proteins to evade the immune response. SaCas9 and AsCas12a Redi variants are substantially less recognized by adaptive immune components,including reduced binding affinity to MHC molecules and attenuated generation of cytotoxic T cell responses,yet maintain wild-type levels of activity and specificity. In vivo editing of PCSK9 with SaCas9.Redi.1 is comparable in efficiency to wild-type SaCas9,but significantly reduces undesired immune responses. This demonstrates the utility of this approach in engineering proteins to evade immune detection. Subject terms: Protein design,Immunogenetics,CRISPR-Cas9 genome editing
View Publication
产品类型:
产品号#:
100-0956
产品名:
ImmunoCult™ XF培养基
A. Demchenko et al. (Oct 2025)
PLOS Computational Biology 21 10
A semi-automated algorithm for image analysis of respiratory organoids
Respiratory organoids have emerged as a powerful in vitro model for studying respiratory diseases and drug discovery. However,the high-throughput analysis of organoid images remains a challenge due to the lack of automated and accurate segmentation tools. This study presents a semi-automatic algorithm for image analysis of respiratory organoids (nasal and lung organoids),employing the U-Net architecture and CellProfiler for organoids segmentation. The algorithm processes bright-field images acquired through z-stack fusion and stitching. The model demonstrated a high level of accuracy,as evidenced by an intersection-over-union metric (IoU) of 0.8856,F1-score = 0.937 and an accuracy of 0.9953. Applied to forskolin-induced swelling assays of lung organoids,the algorithm successfully quantified functional differences in Cystic Fibrosis Transmembrane conductance Regulator (CFTR)-channel activity between healthy donor and cystic fibrosis patient-derived organoids,without fluorescent dyes. Additionally,an open-source dataset of 827 annotated respiratory organoid images was provided to facilitate further research. Our results demonstrate the potential of deep learning to enhance the efficiency and accuracy of high-throughput respiratory organoid analysis for future therapeutic screening applications. Author summaryIn this study,we developed a semi-automated tool to analyze images of respiratory organoids—3D cell structures that mimic the human respiratory system. These organoids are vital for studying diseases like cystic fibrosis and testing potential drugs,but manually analyzing their images is time-consuming and prone to errors. Our tool uses artificial intelligence (AI) to quickly and accurately measure organoid size and shape from bright-field microscope images,eliminating the need for fluorescent dyes that can harm cells. We trained our AI model on a publicly shared dataset of 827 annotated organoid images,achieving high accuracy in detecting and quantifying organoids. When applied to cystic fibrosis research,the tool successfully measured differences in organoid swelling (forskolin-induced swelling - a key test for drug response) between healthy and patient-derived samples. By making our dataset and method openly available,we hope to support further research into respiratory diseases. Our work bridges the gap between complex lab techniques and practical applications,offering a faster,more reliable way to study human health and disease.
View Publication
产品类型:
产品号#:
05040
产品名:
PneumaCult™-Ex Plus 培养基
Niu C et al. (SEP 2009)
Blood 114 10 2087--96
c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development.
RNA-binding motif protein 15 (RBM15) is involved in the RBM15-megakaryoblastic leukemia 1 fusion in acute megakaryoblastic leukemia. Although Rbm15 has been reported to be required for B-cell differentiation and to inhibit myeloid and megakaryocytic expansion,it is not clear what the normal functions of Rbm15 are in the regulation of hematopoietic stem cell (HSC) and megakaryocyte development. In this study,we report that Rbm15 may function in part through regulation of expression of the proto-oncogene c-Myc. Similar to c-Myc knockout (c-Myc-KO) mice,long-term (LT) HSCs are significantly increased in Rbm15-KO mice due to an apparent LT-HSC to short-term HSC differentiation defect associated with abnormal HSC-niche interactions caused by increased N-cadherin and beta(1) integrin expression on mutant HSCs. Both serial transplantation and competitive reconstitution capabilities of Rbm15-KO LT-HSCs are greatly compromised. Rbm15-KO and c-Myc-KO mice also share related abnormalities in megakaryocyte development,with mutant progenitors producing increased,abnormally small low-ploidy megakaryocytes. Consistent with a possible functional interplay between Rbm15 and c-Myc,the megakaryocyte increase in Rbm15-KO mice could be partially reversed by ectopic c-Myc. Thus,Rbm15 appears to be required for normal HSC-niche interactions,for the ability of HSCs to contribute normally to adult hematopoiesis,and for normal megakaryocyte development; these effects of Rbm15 on hematopoiesis may be mediated at least in part by c-Myc.
View Publication
产品类型:
产品号#:
09600
09650
19756
19756RF
04971
04902
04901
04963
04962
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
MegaCult™-C细胞因子完整试剂盒
胶原蛋白溶液
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
Dumitriu B et al. (AUG 2006)
Blood 108 4 1198--207
Sox6 cell-autonomously stimulates erythroid cell survival, proliferation, and terminal maturation and is thereby an important enhancer of definitive erythropoiesis during mouse development.
Erythropoiesis,the essential process of hematopoietic stem cell development into erythrocytes,is controlled by lineage-specific transcription factors that determine cell fate and differentiation and by the hormone erythropoietin that stimulates cell survival and proliferation. Here we identify the Sry-related high-mobility-group (HMG) box transcription factor Sox6 as an important enhancer of definitive erythropoiesis. Sox6 is highly expressed in proerythroblasts and erythroblasts in the fetal liver,neonatal spleen,and bone marrow. Mouse fetuses and pups lacking Sox6 develop erythroid cells slowly and feature misshapen,short-lived erythrocytes. They compensate for anemia by elevating the serum level of erythropoietin and progressively enlarging their erythropoietic tissues. Erythroid-specific inactivation of Sox6 causes the same phenotype,demonstrating cell-autonomous roles for Sox6 in erythroid cells. Sox6 potentiates the ability of erythropoietin signaling to promote proerythroblast survival and has an effect additive to that of erythropoietin in stimulating proerythroblast and erythroblast proliferation. Sox6 also critically facilitates erythroblast and reticulocyte maturation,including hemoglobinization,cell condensation,and enucleation,and ensures erythrocyte cytoskeleton long-term stability. It does not control adult globin and erythrocyte cytoskeleton genes but acts by stabilizing filamentous actin (F-actin) levels. Sox6 thus enhances erythroid cell development at multiple levels and thereby ensures adequate production and quality of red blood cells.
View Publication
Ng Y-S et al. (OCT 2004)
The Journal of experimental medicine 200 7 927--34
Bruton's tyrosine kinase is essential for human B cell tolerance.
Most polyreactive and antinuclear antibodies are removed from the human antibody repertoire during B cell development. To elucidate how B cell receptor (BCR) signaling may regulate human B cell tolerance,we tested the specificity of recombinant antibodies from single peripheral B cells isolated from patients suffering from X-linked agammaglobulinemia (XLA). These patients carry mutations in the Bruton's tyrosine kinase (BTK) gene that encode an essential BCR signaling component. We find that in the absence of Btk,peripheral B cells show a distinct antibody repertoire consistent with extensive secondary V(D)J recombination. Nevertheless,XLA B cells are enriched in autoreactive clones. Our results demonstrate that Btk is essential in regulating thresholds for human B cell tolerance.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Elliott DA et al. (DEC 2011)
Nature methods 8 12 1037--1040
NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes.
NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation,purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.
View Publication