Wernig M et al. (AUG 2008)
Nature biotechnology 26 8 916--24
A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types.
The study of induced pluripotency is complicated by the need for infection with high-titer retroviral vectors,which results in genetically heterogeneous cell populations. We generated genetically homogeneous 'secondary' somatic cells that carry the reprogramming factors as defined doxycycline (dox)-inducible transgenes. These cells were produced by infecting fibroblasts with dox-inducible lentiviruses,reprogramming by dox addition,selecting induced pluripotent stem cells and producing chimeric mice. Cells derived from these chimeras reprogram upon dox exposure without the need for viral infection with efficiencies 25- to 50-fold greater than those observed using direct infection and drug selection for pluripotency marker reactivation. We demonstrate that (i) various induction levels of the reprogramming factors can induce pluripotency,(ii) the duration of transgene activity directly correlates with reprogramming efficiency,(iii) cells from many somatic tissues can be reprogrammed and (iv) different cell types require different induction levels. This system facilitates the characterization of reprogramming and provides a tool for genetic or chemical screens to enhance reprogramming.
View Publication
产品类型:
产品号#:
72742
产品名:
强力霉素(盐酸盐)
文献
Shen J et al. (NOV 2013)
ACS nano 7 11 9867--9880
High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics.
Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However,lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study,we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells,causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage,PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice,including changes in serum cytokines,chemokines,and colony-stimulating factors. In addition,weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight,hematology,blood chemistry,and major organ histology. Collectively,the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
N. L. Urizar et al. (may 2002)
Science (New York,N.Y.) 296 5573 1703--6
A natural product that lowers cholesterol as an antagonist ligand for FXR.
Extracts of the resin of the guggul tree (Commiphora mukul) lower LDL (low-density lipoprotein) cholesterol levels in humans. The plant sterol guggulsterone [4,17(20)-pregnadiene-3,16-dione] is the active agent in this extract. We show that guggulsterone is a highly efficacious antagonist of the farnesoid X receptor (FXR),a nuclear hormone receptor that is activated by bile acids. Guggulsterone treatment decreases hepatic cholesterol in wild-type mice fed a high-cholesterol diet but is not effective in FXR-null mice. Thus,we propose that inhibition of FXR activation is the basis for the cholesterol-lowering activity of guggulsterone. Other natural products with specific biologic effects may modulate the activity of FXR or other relatively promiscuous nuclear hormone receptors.
View Publication
Rö et al. (SEP 2016)
Nature methods 13 9 777--783
TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis,but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion,we developed TRIC (http://proteomics.ethz.ch/tric/),a software tool that utilizes fragment-ion data to perform cross-run alignment,consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells,TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus,TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.
View Publication
K. K. Dunn and S. P. Palecek ( 2018)
Frontiers in medicine 5 110
Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair.
Recent advances in the differentiation and production of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) have stimulated development of strategies to use these cells in human cardiac regenerative therapies. A prerequisite for clinical trials and translational implementation of hPSC-derived CMs is the ability to manufacture safe and potent cells on the scale needed to replace cells lost during heart disease. Current differentiation protocols generate fetal-like CMs that exhibit proarrhythmogenic potential. Sufficient maturation of these hPSC-derived CMs has yet to be achieved to allow these cells to be used as a regenerative medicine therapy. Insights into the native cardiac environment during heart development may enable engineering of strategies that guide hPSC-derived CMs to mature. Specifically,considerations must be made in regard to developing methods to incorporate the native intercellular interactions and biomechanical cues into hPSC-derived CM production that are conducive to scale-up.
View Publication
c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development.
RNA-binding motif protein 15 (RBM15) is involved in the RBM15-megakaryoblastic leukemia 1 fusion in acute megakaryoblastic leukemia. Although Rbm15 has been reported to be required for B-cell differentiation and to inhibit myeloid and megakaryocytic expansion,it is not clear what the normal functions of Rbm15 are in the regulation of hematopoietic stem cell (HSC) and megakaryocyte development. In this study,we report that Rbm15 may function in part through regulation of expression of the proto-oncogene c-Myc. Similar to c-Myc knockout (c-Myc-KO) mice,long-term (LT) HSCs are significantly increased in Rbm15-KO mice due to an apparent LT-HSC to short-term HSC differentiation defect associated with abnormal HSC-niche interactions caused by increased N-cadherin and beta(1) integrin expression on mutant HSCs. Both serial transplantation and competitive reconstitution capabilities of Rbm15-KO LT-HSCs are greatly compromised. Rbm15-KO and c-Myc-KO mice also share related abnormalities in megakaryocyte development,with mutant progenitors producing increased,abnormally small low-ploidy megakaryocytes. Consistent with a possible functional interplay between Rbm15 and c-Myc,the megakaryocyte increase in Rbm15-KO mice could be partially reversed by ectopic c-Myc. Thus,Rbm15 appears to be required for normal HSC-niche interactions,for the ability of HSCs to contribute normally to adult hematopoiesis,and for normal megakaryocyte development; these effects of Rbm15 on hematopoiesis may be mediated at least in part by c-Myc.
View Publication
产品类型:
产品号#:
09600
09650
04971
04902
04901
04963
04962
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
MegaCult™-C细胞因子完整试剂盒
胶原蛋白溶液
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
文献
Schwieger M et al. (APR 2004)
Blood 103 7 2744--52
A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse.
The CCAAT/enhancer binding protein alpha (C/EBPalpha) is an essential transcription factor for granulocytic differentiation. C/EBPalpha mutations are found in approximately 8% of acute myeloid leukemia (AML) patients. Most of these mutations occur in the N-terminal coding region,resulting in a frame shift and the enhanced translation of a dominant-negative 30-kDa protein,which may be responsible for the differentiation block observed in AML. To test this hypothesis,we introduced a cDNA encoding an N-terminal mutated C/EBPalpha (mut10) into primary hematopoietic progenitors using a retroviral vector. Expression of mut10 in human CD34+ cord blood cells dramatically inhibited differentiation of both myeloid and erythroid lineages. Immunohistochemical analysis demonstrated coexpression of both myeloid and erythroid markers in the immature transformed cells. Surprisingly,mut10 did not block myelocytic differentiation in murine progenitors but did alter their differentiation kinetics and clonogenicity. Experiments were performed to confirm that the differential effect of mut10 on murine and human progenitors was not due to species-specific differences in C/EBPalpha protein sequences,expression levels,or inefficient targeting of relevant cells. Taken together,our results underline the intrinsic differences between hematopoietic controls in mouse and human and support the hypothesis that mutations in CEBPA are critical events in the disruption of myeloid differentiation in AMLs.
View Publication